Skip to Content

Computing beyond Silicon

It is inevitable that eventually Moore’s Law will fail–at least for silicon technology. Further miniaturizing silicon transistors to fit more of them on a microchip will become impossible, or at least too expensive. Researchers are anticipating that day by developing alternative materials such as gallium arsenide, graphene, and carbon nanotubes. The hope is that transistors made from these materials will be smaller, faster, and more energy efficient than anything that could ever be made from silicon. “We need to add more materials to the toolbox,” says Michael Mayberry, director of components research at Intel.

One challenge is to make these materials work with the infrastructure built for silicon, which represents billions of dollars in investment for chip makers (see “The High Cost of Upholding Moore’s Law”). Intel, for one, has developed expertise in compound semiconductors, such as gallium arsenide, that operate at higher speeds and lower voltages than silicon. But gallium arsenide is brittle, so devices made from it are difficult to manufacture in volume. Intel is trying to get around the problem by growing thin layers of this material on top of silicon wafers, hoping to improve silicon chips by adding a few high-­performance gallium arsenide elements.

Other major contenders to replace silicon are based on carbon. In February, IBM made transistors from graphene, a one-atom-thick mesh of carbon; they are much faster than silicon transistors, switching at the rate of 100 gigahertz. Crucially, the IBM researchers built the transistor arrays on wafers, using a manufacturing-friendly process. These graphene transistors are still much bigger than their silicon counterparts, however, and an integrated circuit hasn’t been made from them yet.

Researchers are also working on making transistors from carbon nanotubes. Like the graphene transistors, these are speedy, but they are much smaller. At Stanford University, scientists are developing techniques for fabricating three-dimensional integrated circuits based on these cylindrical molecules of carbon.

It’s still uncertain what will ultimately replace silicon. But this once dominant material is already looking too fragile, too power hungry, and too expensive to drive our computers forever.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.