Skip to Content

Teaching an Old Polymer Memory Tricks

A polymer takes on four shapes depending on the temperature.
March 11, 2010

Researchers have uncovered shape-memory properties in a commercially available polymer that’s widely used to make fuel-cell membranes. The polymer, Nafion, can take on four different shapes in response to temperature changes–researchers have made triple-shape polymers before. “It’s arguably the most versatile smart polymer ever discovered,” says Tao Xie, a polymer scientist at the GM Research and Development Center in Warren, MI, who published his findings in this week’s Nature.

Morphing magic: Researchers have trained the polymer Nafion to take on different shapes at different temperatures. Clockwise from top left: the polymer’s original shape; at 140 ºC; at 107 ºC; and at 68 ºC.

Shape-memory polymers go from a predefined shape to another in response to triggers such as temperature, light, or magnetic field. Most of these materials have one temporary shape and a permanent state they revert to when triggered. The polymers are being developed for self-adjusting orthodontic braces, self-tying sutures for laparoscopic surgery, medical devices such as blood vessel stents and bone implants, and aircraft with wings that morph during flight.

The versatility of Nafion as a multishape polymer is surprising, as it was not initially developed for this purpose, says Andreas Lendlein, a shape-memory polymer pioneer at GKSS Research Center in Teltow, Germany. Xie says his findings suggest that a broad range of polymers with similar properties might be able to change shape multiple times.

Nafion’s shape-shifting properties also indicate that it could take on more than four shapes. The polymer can be programmed to morph at arbitrary temperatures within a broad range as long as these temperatures are well separated. Xie was able to program three transitions, giving a total of four shapes. “You wonder how many they can remember,” he says.

“The more shapes you can memorize, the more complex you can make the structure and function,” says Christoph Weder, a polymer chemist at the University of Fribourg in Switzerland. It could, for one, expand current applications: aircraft wings that take on four different forms; spacecraft antenna that expand to different widths; and adjustable-width stents that could be moved from a wider blood vessel to a narrower one or that could be placed at the branch of an artery.

In 2006, Lendlein and his colleagues developed a material that can take on three shapes in response to heat changes. The key was to develop two types of polymers with distinct melting points. The material kept one shape at room temperature, shifted to a second shape when heated above one melting point, and a final shape when heated to an even higher temperature.

With Nafion, Xie says, “we don’t have to do anything fancy.” It can be programmed to hold multiple shapes because it has a broad temperature range, 55 °C to 130 °C, where it stays soft and rubbery and can be deformed. Most polymers have one such glass transition temperature; they are rubbery above it and brittle below.

Programming the polymer involves heating it to a high temperature within the glass transition range, deforming and then cooling it to a lower temperature while maintaining the deforming force. “After the [cooling] event, that shape is locked,” Xie says. Deforming the polymer and cooling it again will program additional shapes.

Xie was able to program Nafion three times. The polymer associates the three temporary shapes–long, longer, and bent–with the temperatures at which it was deformed. When it’s heated, it cycles through the temporary shapes, going from bent to straight and then shorter at those preset temperatures until it reaches its permanent shape.

Neither the material nor the concept are new, Weder says, but this is interesting work and novel since it is the first four-shape memory material. “Xie takes a piece of polymer that everyone knows and plays around with and he shows a new trick with this polymer,” he says. “In principle, I don’t see why it can’t take on more shapes.”

Keep Reading

Most Popular

10 Breakthrough Technologies 2024

Every year, we look for promising technologies poised to have a real impact on the world. Here are the advances that we think matter most right now.

Scientists are finding signals of long covid in blood. They could lead to new treatments.

Faults in a certain part of the immune system might be at the root of some long covid cases, new research suggests.

AI for everything: 10 Breakthrough Technologies 2024

Generative AI tools like ChatGPT reached mass adoption in record time, and reset the course of an entire industry.

What’s next for AI in 2024

Our writers look at the four hot trends to watch out for this year

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.