Skip to Content

Personalized Medicine on the Spot

A new device can rapidly test biological samples for genetic variations that could cause dangerous reactions to some drugs.
February 23, 2010

Different people can react to drugs in different ways, and in some cases the response can be predicted from their genes. For example, the drug warfarin, often used to prevent blood clots, can cause dangerous bleeding in some patients. Researchers have identified two genetic variations that can increase this risk.

Tests for this type of individual genetic variation have been available for a long time, but in many cases they cost too much and take too long. Nanosphere, a startup out of Northwestern University that’s based in Northbrook, IL, hopes to change that. Its Verigene system, which takes just a few hours to analyze DNA from blood or other material, allows doctors to test for genetic variations without having to send samples out to a lab.

A. Disposable cartridge

A single-use cartridge uses a combination of chemical reactions to isolate fragments of DNA from a patient sample and test them for specific genetic characteristics. The top half of the cartridge is discarded after this process is complete, leaving a prepared glass slide behind.

B. Bar Code

To help keep track of samples, a bar code is printed on the test cartridge and the underlying slide.

C. Reagent Wells

The necessary ingredients for the chemical reactions used to process the DNA are stored in wells located around the edges of the test cartridge. After the DNA is extracted from a sample, the machine uses air pressure and mechanical valves to release the ingredients from the wells as needed. Strands of DNA that are complementary to the target sequences are used to bind those sequences to the glass slide below the cartridge, as well as to gold nanoparticles that will allow the DNA to be detected when exposed to light. The cartridge washes away any excess DNA or nanoparticles and then sets off a reaction that coats the remaining nanoparticles with silver, which makes it easier to scan for them.

D. DNA Loading chamber

A DNA sample is loaded into the port shown here. Sonic energy, applied when the cartridge is inserted into the machine that processes the samples, breaks the DNA into small fragments and separates it into its two complementary strands so that it can be captured on the surface of the glass slide.

E. Glass Slide (Microarray)

After the chemical reactions have finished, the target DNA remains on the surface of the prepared glass slide, tagged by silver-coated gold nanoparticles. The Verigene’s reader can read the slide by shining light into it and measuring how that light is scattered by the tagged DNA. The system can be used to look for single or multiple genetic targets.

Keep Reading

Most Popular

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

section of Rima Sharp captured by the LRO
section of Rima Sharp captured by the LRO

The moon didn’t die as early as we thought

Samples from China’s lunar lander could change everything we know about the moon’s volcanic record.

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.