Skip to Content
Uncategorized

Magnetic Liquid Separates Blood Cells

A new device separates healthy and diseased cells.

Researchers at Yale have demonstrated a device that uses a magnetic liquid to separate blood cells based on their size and shape in just minutes.

This device uses magnetic fields to separate cells by size and shape.
Credit: Hur Koser

The device applies a magnetic field to a liquid containing magnetic nanoparticles. The nanoparticles create waves that carry cells along depending on their size, shape and mechanical properties. The researchers, led by electrical engineering professor Hur Koser, hope to develop a cheap alternative to cell-sorting techniques that are time-consuming and sometimes require expensive labeling.

Liquid suspensions of magnetic particles, called ferrofluids, are already used as industrial lubricants and in loudspeakers and computer hard disks. These liquids typically contain other chemicals to keep the particles from clumping together and from coming out of the suspension. Magnetic nanoparticles are also being explored for cancer therapies and as contrast agents for magnetic resonance imaging (MRI)–both applications that require very low concentrations.

But the Yale group is the first to make a high-concentration, biocompatible ferrofluid that doesn’t contain any chemicals that are harmful to cells, yet still keeps the particles afloat. “It was very tricky to find the parameters to maintain live cells,” says Koser.

In experiments described this week in the Proceedings of the National Academy of Sciences, the Yale researchers made microfluidic channels lined with magnetic-field-generating electrodes. Cells were then added to a ferrofluid in the channel. When magnetic fields were applied along the device, the particles in the fluid pushed the cells along the channel, separating them by size and shape. Something similar can be accomplished using electrical fields, says Koser, but this can damage the cells. His group used the device to separate live blood cells from sickle cells and bacteria.

Koser believes the device could be especially helpful when trying to detect very rare types of blood cell, such as cancerous ones. Rapidly sorting cells using magnetic fields could improve the sensitivity of tests for these rare cells without adding any costly chemical labels. Tumor cells are squishier than healthy ones–possibly because they grow quickly and so don’t form a proper internal cell skeleton–and Koser hopes that magnetic fields will also be able to separate cells based on their elasticity and other mechanical properties.

“The next step is to try this in conjunction with existing sensors to improve their sensitivity and cut down on time,” says Koser.

In the video below, a magnetic field creates waves in a liquid containing magnetic nanoparticles (the nanoparticles are not visible) to separate two types of microbeads based on their size.

Deep Dive

Uncategorized

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

stock art of market data
stock art of market data

Maximize business value with data-driven strategies

Every organization is now collecting data, but few are truly data driven. Here are five ways data can transform your business.

Cryptocurrency fuels new business opportunities

As adoption of digital assets accelerates, companies are investing in innovative products and services.

Mifiprex pill
Mifiprex pill

Where to get abortion pills and how to use them

New US restrictions could turn abortion into do-it-yourself medicine, but there might be legal risks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.