Skip to Content
Uncategorized

Computer-Predicted Catalysis

Two computer programs accurately predict how molecules interact with metals.

The basic theory of how chemical reactions happen–molecules approach each other, overcome potential energy, and then form new reactants–has held up in experiments almost every time. But the theory doesn’t fully explain what happens when a molecule approaches a metal surface, such as the surface of an industrial catalyst. This is important because metal catalysts are widely used in catalytic converters, fuel cells, and even to make margarine.

What makes metals tricky is that they don’t have discrete energy states like molecules–rather than jumping from one specific energy level to another, electrons move between energy states in a metal in a more continuous way.

Two papers published in the journal Science this week use new algorithms to better describe what happens at the surface of metals including catalysts.

One describes the interactions between a gold surface and nitric oxide molecules excited using a laser. Older models predict that when the gas hits the gold surface it will still be vibrating. The new model predicts what actually happens: the molecule electronically couples to the gold.

The second paper looks at the interaction that cause hydrogen atoms on a copper surface to bond with one another and form hydrogen gas. It remains to be seen whether these results can be generalized, but if they can it could lead to a better understanding of the metal catalysts widely used in industrial chemistry.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.