Skip to Content
Uncategorized

Computer-Predicted Catalysis

Two computer programs accurately predict how molecules interact with metals.

The basic theory of how chemical reactions happen–molecules approach each other, overcome potential energy, and then form new reactants–has held up in experiments almost every time. But the theory doesn’t fully explain what happens when a molecule approaches a metal surface, such as the surface of an industrial catalyst. This is important because metal catalysts are widely used in catalytic converters, fuel cells, and even to make margarine.

What makes metals tricky is that they don’t have discrete energy states like molecules–rather than jumping from one specific energy level to another, electrons move between energy states in a metal in a more continuous way.

Two papers published in the journal Science this week use new algorithms to better describe what happens at the surface of metals including catalysts.

One describes the interactions between a gold surface and nitric oxide molecules excited using a laser. Older models predict that when the gas hits the gold surface it will still be vibrating. The new model predicts what actually happens: the molecule electronically couples to the gold.

The second paper looks at the interaction that cause hydrogen atoms on a copper surface to bond with one another and form hydrogen gas. It remains to be seen whether these results can be generalized, but if they can it could lead to a better understanding of the metal catalysts widely used in industrial chemistry.

Keep Reading

Most Popular

Geoffrey Hinton tells us why he’s now scared of the tech he helped build

“I have suddenly switched my views on whether these things are going to be more intelligent than us.”

Meet the people who use Notion to plan their whole lives

The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.

Learning to code isn’t enough

Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.

Deep learning pioneer Geoffrey Hinton has quit Google

Hinton will be speaking at EmTech Digital on Wednesday.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.