Skip to Content

Deriving the Arrow of Time

The laws of physics have no preferred direction for time, unless you take quantum cosmology into account.

Humanity has long struggled over the nature of time. In the last century, physicists were shocked to discover that the arrow of time cannot be derived from the laws of physics which appear perfectly symmetric. For every solution for t, there seems to be an equally valid solution for -t (except in a few cases involving the weak force in which case the symmetry is more complex, involving charge, parity and time)

At first glance that looks puzzling. But after a few years reflection, most physicists agreed that it’s perfectly possible for symmetric laws to give rise to asymmetric phenomena. Physicists have identified a number of such asymmetric phenomena that represent “arrows of time”, says Claus Kiefer at the Institut fur Theoretische Physik in Cologne, Germany.

Perhaps the most famous is the thermodynamic arrow of time in which the entropy of a closed system must always increase. But there is also a quantum mechanical arrow of time in which a preferred direction of time is determined by decoherence and a gravitational arrow of time in which the preferred direction is determined by gravitational collapse.

“What is peculiar is the fact that the time direction of the phenomena is always the same,” says Kiefer. It’s almost as if the arrow of time were predetermined in some way. “The question raised by the presence of all these arrows is whether a common master arrow of time is behind all of them,” he asks.

What master law might be responsible? Kiefer’s conjecture is that the direction of time arises when quantum mechanics is applied to the universe as a whole, a branch of science known as quantum cosmology.

Central to this idea is the Wheeler-DeWitt equation that describes the quantum state of the universe as a whole, including both its gravitational and non-gravitational states.

This equation does not contain any parameter that is equivalent to our classical notion of time. In the Wheeler-DeWitt formulation, spacetime does not exist in any classical sense and particles do not have traditional trajectories in spacetime, just as particles do not have traditional trajectories in ordinary quantum mechanics. Instead all the information about the universe is encoded in its wavefunction

So how might an arrow of time arise? While the universe is considered homogeneous to the first degree, there is no preferred direction of time, says Kiefer. But he shows that when small inhomogeneities are taken into account, an asymmetry arises in this wavefunction.

He even says that with slight elaborations, this idea could be applied to an arrow of time in the multiverse.

What he fails to do, however, is provide a way of testing this idea. There is no way of determining experimentally whether the Wheeler-DeWitt formulation is really the origin of the arrow of time.

Of course, that’s a common failure of most thinking about quantum cosmology (not to mention cosmology in general). And until physicists find a way to prune their ideas about time with experimental data, we can merely marvel at their creativity.

Ref: arxiv.org/abs/0910.5836 : Can the Arrow of Time be Understood from Quantum Cosmology?

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.