Skip to Content

From the Labs: Biomedicine

New publications, experiments and breakthroughs in biomedicine–and what they mean.
October 20, 2009

Mice from Skin Cells
Reprogrammed cells develop into live animals.

A special mouse: This rodent grew from an embryo made with induced pluripotent stem cells, which were derived from adult skin cells.

Source: “iPS cells produce viable mice through tetraploid complementation”
Qi Zhou et al.
Nature
461: 86-90

“iPS cells can support full-term development of tetraploid blastocyst-­complemented embryos”
Shaorong Gao et al.
Cell Stem Cell
5: 135-138

Results: Researchers in China grew viable mice from induced pluripotent stem cells, which are made by modifying adult cells. Some of the mice went on to produce a second generation of offspring.

Why it matters: The research proved that induced pluripotent stem (iPS) cells, like embryonic stem cells, can differentiate into any cell type in the body. It suggests that iPS cells can be used for the same scientific purposes as embryonic stem cells–for example, to develop treatments that replace diseased cells.

Methods: Researchers transferred iPS cells generated from mouse fibroblasts (a type of skin cell) into specialized embryos that lacked the ability to develop on their own. Introducing the iPS cells triggered the embryos to begin developing. The embryos were then transplanted into surrogate mothers.

Next steps: Although the scientists’ achievement was impressive, only 1 to 3 percent of the embryos developed into live mice. In addition, many of those mice had physical abnormalities or died soon after birth. Scientists want to understand how the differences between iPS cells and embryonic stem cells might lead to these abnormalities. They also want to increase the rate of live births.

Speedy Engineering
A machine rapidly modifies bacterial genomes.

Source: “Programming cells by multiplex genome engineering and accelerated evolution”
Harris H. Wang, Farren J. Isaacs, et al.
Nature
460: 894-898

Results: A machine developed by researchers at Harvard, MIT, and Georgia Tech can quickly make thousands of targeted changes to a bacterial genome. Using the machine to modify E. coli bacteria that produce lycopene, an antioxidant found in tomatoes, the researchers took just three days to create a strain that produced five times as much of the chemical as the original.

Why it matters: The machine could dramatically speed the increasingly sophisticated process by which researchers modify microbes to produce biofuels and other useful chemicals. This type of engineering is slow because the scientists typically need to change many interrelated genes, but they can make at most a few changes to the bacterial genome at a time. Automating the process can accomplish in just a few days work that previously would have taken weeks or months.

Methods: Scientists mix bacteria with more than 23,000 different short strands of DNA, each of which could modify one of 24 different genes in a way that could enhance the organisms’ ability to perform a certain task. One altered strand, for example, might make an enzyme more efficient. The new machine subjects vials of the mixture to temperature and chemical cycles that encourage the bacterial cells to take up the foreign DNA, swapping a particular strand into their genomes in place of the native piece it resembles. Within
a vial, the rapidly reproducing bacteria take up more of the foreign DNA in each generation. The researchers examine the simultaneously produced strains and pick the one whose genetic changes make it most efficient at the desired task.

Next steps: Researchers want to improve the efficiency of the device, increasing the proportion of bacterial cells that end up with large numbers of genetic changes. They also plan to extend the technology to human cell lines and to yeast, which is important for making biofuels.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.