Skip to Content
MIT News magazine

Robofish

Small swimming robots could aid underwater sensing and exploration.
October 20, 2009

Borrowing from Mother Nature, MIT researchers have built a school of swimming robofish that slip through the water just as gracefully as the real thing, if not quite as fast. Mechanical-engineering colleagues Pablo Valdivia y Alvarado ‘99, SM ‘01, PhD ‘07 (above), and professor Kamal Youcef-Toumi, SM ‘81, ScD ‘85, designed the sleek and inexpensive robots to maneuver into areas where traditional underwater autonomous vehicles can’t go. Fleets of them could be used to inspect submerged structures such as boats and oil and gas pipes; to patrol ports, lakes, and rivers; and to help detect environmental pollutants.

“Given the [robotic] fish’s robustness, it would be ideal as a long-term sensing and exploration unit,” says Valdivia y Alvarado. “Several of these could be deployed, and even if only a small percentage make it back, there wouldn’t be a terrible capital loss.”

Robotic fish are not new: in 1994, MIT ocean engineers demonstrated the four-foot-long Robotuna. Robotuna had 2,843 parts controlled by six motors, but the new robotic fish, which is less than a foot long, is powered by a single motor and is made of fewer than 10 individual components, protected by a flexible body. The motor, placed in the fish’s midsection, initiates a wave that travels along the fish’s body, propelling it forward. So far, the MIT prototype fish can swim as fast as one body length per second. That’s much slower than real fish, which can cover up to 10 times their body length in a second.

As part of his doctoral thesis, Valdivia y Alvarado created a model that calculates how stiff each part of the robot’s body should be to generate the desired speed and swimming motion. With this model, the researchers can use polymers to create a continuous fish body that is stiffer in some places and more flexible in others, instead of building each body section separately and then joining them together. “This philosophy can be used for more than just fish,” says Youcef-Toumi. For example, it could help improve robotic prosthetic limbs.

This fall, the researchers plan to investigate more complex locomotion and test some new prototype robotic salamanders and manta rays, says Valdivia y Alvarado. This research should put their approach to a harder test.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

It’s time to retire the term “user”

The proliferation of AI means we need a new word.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.