Skip to Content

iRobot Adds to a Shape-Shifting Robot Menagerie

Chembot is just the latest morphing robot to come rolling out of the lab.

This week at IROS 09 (Intelligent Robots and Systems), iRobot and the University of Chicago unveiled a soft, blobby robot that looks something like an inflating marshmallow.

The new robot, called chembot, changes the shape of its stretchy polymer skin using a technique called “jamming skin enabled locomotion”. This means that different sections of the robot inflate or deflate separately; controlling this inflation and deflation enables the robot to move. DARPA, which is funding the project, hopes to use the robot to squeeze into small holes or under doors, which I’m guessing would be used for sophisticated surveillance.

See Chembot in action in this movie, (which also includes a detailed explanation of how the flexible skin works).

Chembot is, however, far from the first shape-shifting robot.

Here are four robots that show similar metamorphic skill.

——————————————————————————————————-

TET Rover, NASA

NASA has also been working its own shape-changing robots for a while. Instead of a soft, deformable material though, NASA’s “TET” rover, shown in the animation above, changes shape by adjusting trusses that extend or retract. This would let the robot tumble across terrain and squeeze through tight crevasses on other planets.

——————————————————————————————————-

Superbot, University of Southern California

Another shape-shifter is the University of Southern California’s SuperBot. This one changes shape using several modular units which connect together like Legos. This allows it to adopt different motions, including walking, crawling or rolling.

——————————————————————————————————-

PolyBot, University of Pennsylvania

Here is a similar reconfigurable robot developed by Mark Yim from the University of Pennsylvania’s (a 1999 TR35 winner). Yim’s reconfigurable robots are inspired by snakes and lizards and this one can even reassemble itself when kicked apart. This trait could be especially useful for robots working in isolated places.

——————————————————————————————————-

Atron, Maersk Institute

The Maersk Institute in Denmark has made self-containing modules that can connect, communicate, and share power to make a long, winding robot, dubbed ATRON. See ATRON modules learning to work together and develop modes of locomotion below.

Keep Reading

Most Popular

Workers disinfect the street outside Shijiazhuang Railway Station
Workers disinfect the street outside Shijiazhuang Railway Station

Why China is still obsessed with disinfecting everything

Most public health bodies dealing with covid have long since moved on from the idea of surface transmission. China’s didn’t—and that helps it control the narrative about the disease’s origins and danger.

individual aging affects covid outcomes concept
individual aging affects covid outcomes concept

Anti-aging drugs are being tested as a way to treat covid

Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.