Skip to Content
Uncategorized

Rogue Microwaves Could Help Explain Freak Ocean Waves

Rogue waves are more common than physicists thought and not just on the oceans.

Mariners have long known of and feared the freak wave that can smash ocean-going vessels to smithereens. Understanding these rogue waves has been much more difficult.

One question is how they arise. The standard theories of wave scattering simply don’t allow rogue waves to form with anywhere near the frequency that anecdotal evidence would suggest.

Another problem is recreating the conditions that allow rogue waves to form in the lab so that any new thinking can be tested.

Now it looks as if oceanographers have a useful laboratory analogue with which to explore the freak wave phenomenon.

Eric Heller at Harvard University and various pals have studied rogue waves for some time. Today they show how microwaves propagating through a forest of scatterers which the team call a “quasi-two-dimensional resonator with randomly distributed scatterers, each mimicking an r^−2 repulsive potential”.

The results are fascinating because they clearly show the rogue waves (or hot spots in microwave terms) appearing more often than conventional thinking (Rayleigh’s law for the wave height distribution) allows. In fact the team says the probability in their set up of a rogue wave appearing is 15 orders of magnitude greater than Rayleigh statistics predict. They attribute the difference to ray refraction rather than to resonance effects as conventional thinking might suppose.

That kind of modeling might have useful implications for oceanographers hoping to study freak waves but also to astronomers who might like to better model the scattering that causes the twinkling of light from stars. Heller and co even suggest that rogue hot spots might be responsible for the lasing that occurs in random lasers.

Given that rogue waves seem to be more ubiquitous than anyone imagined, we’re likely to find them cropping up to explain all kinds of anomalous behaviour. They might even be worth exploiting if anyone can find a way to bend the nonlinear physics to their will.

Ref: arxiv.org/abs/0909.0847: Freak Waves in the Linear Regime: A Microwave Study

Deep Dive

Uncategorized

Our best illustrations of 2022

Our artists’ thought-provoking, playful creations bring our stories to life, often saying more with an image than words ever could.

How CRISPR is making farmed animals bigger, stronger, and healthier

These gene-edited fish, pigs, and other animals could soon be on the menu.

The Download: the Saudi sci-fi megacity, and sleeping babies’ brains

This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology. These exclusive satellite images show Saudi Arabia’s sci-fi megacity is well underway In early 2021, Crown Prince Mohammed bin Salman of Saudi Arabia announced The Line: a “civilizational revolution” that would house up…

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.