Skip to Content

Robots ‘Evolve’ the Ability to Deceive

An experiment shows how “deceptive” behavior can emerge from simple rules.

Researchers at the Ecole Polytechnique Fédérale de Lausanne in Switzerland have found that robots equipped with artificial neural networks and programmed to find “food” eventually learned to conceal their visual signals from other robots to keep the food for themselves. The results are detailed in an upcoming PNAS study.

Courtesy of PNAS

The team programmed small, wheeled robots with the goal of finding food: each robot received more points the longer it stayed close to “food” (signified by a light colored ring on the floor) and lost points when it was close to “poison” (a dark-colored ring). Each robot could also flash a blue light that other robots could detect with their cameras.

“Over the first few generations, robots quickly evolved to successfully locate the food, while emitting light randomly. This resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food,” write the authors.

The team “evolved” new generations of robots by copying and combining the artificial neural networksof the most successful robots. The scientists also added a few random changes to their code to mimic biological mutations.

Because space is limited around the food, the bots bumped and jostled each other after spotting the blue light. By the 50th generation, some eventually learned to not flash their blue light as much when they were near the food so as to not draw the attention of other robots, according to the researchers. After a few hundred generations, the majority of the robots never flashed light when they were near the food. The robots also evolved to become either highly attracted to, slightly attracted to, or repelled by the light.

Because robots were competing for food, they were quickly selected to conceal this information,” the authors add.

The researchers suggest that the study may help scientists better understand the evolution of biological communication systems.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.