Skip to Content

Robots ‘Evolve’ the Ability to Deceive

An experiment shows how “deceptive” behavior can emerge from simple rules.

Researchers at the Ecole Polytechnique Fédérale de Lausanne in Switzerland have found that robots equipped with artificial neural networks and programmed to find “food” eventually learned to conceal their visual signals from other robots to keep the food for themselves. The results are detailed in an upcoming PNAS study.

Courtesy of PNAS

The team programmed small, wheeled robots with the goal of finding food: each robot received more points the longer it stayed close to “food” (signified by a light colored ring on the floor) and lost points when it was close to “poison” (a dark-colored ring). Each robot could also flash a blue light that other robots could detect with their cameras.

“Over the first few generations, robots quickly evolved to successfully locate the food, while emitting light randomly. This resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food,” write the authors.

The team “evolved” new generations of robots by copying and combining the artificial neural networksof the most successful robots. The scientists also added a few random changes to their code to mimic biological mutations.

Because space is limited around the food, the bots bumped and jostled each other after spotting the blue light. By the 50th generation, some eventually learned to not flash their blue light as much when they were near the food so as to not draw the attention of other robots, according to the researchers. After a few hundred generations, the majority of the robots never flashed light when they were near the food. The robots also evolved to become either highly attracted to, slightly attracted to, or repelled by the light.

Because robots were competing for food, they were quickly selected to conceal this information,” the authors add.

The researchers suggest that the study may help scientists better understand the evolution of biological communication systems.

Keep Reading

Most Popular

Geoffrey Hinton tells us why he’s now scared of the tech he helped build

“I have suddenly switched my views on whether these things are going to be more intelligent than us.”

Meet the people who use Notion to plan their whole lives

The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.

Learning to code isn’t enough

Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.

Deep learning pioneer Geoffrey Hinton has quit Google

Hinton will be speaking at EmTech Digital on Wednesday.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.