Skip to Content

Robots ‘Evolve’ the Ability to Deceive

An experiment shows how “deceptive” behavior can emerge from simple rules.

Researchers at the Ecole Polytechnique Fédérale de Lausanne in Switzerland have found that robots equipped with artificial neural networks and programmed to find “food” eventually learned to conceal their visual signals from other robots to keep the food for themselves. The results are detailed in an upcoming PNAS study.

Courtesy of PNAS

The team programmed small, wheeled robots with the goal of finding food: each robot received more points the longer it stayed close to “food” (signified by a light colored ring on the floor) and lost points when it was close to “poison” (a dark-colored ring). Each robot could also flash a blue light that other robots could detect with their cameras.

“Over the first few generations, robots quickly evolved to successfully locate the food, while emitting light randomly. This resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food,” write the authors.

The team “evolved” new generations of robots by copying and combining the artificial neural networksof the most successful robots. The scientists also added a few random changes to their code to mimic biological mutations.

Because space is limited around the food, the bots bumped and jostled each other after spotting the blue light. By the 50th generation, some eventually learned to not flash their blue light as much when they were near the food so as to not draw the attention of other robots, according to the researchers. After a few hundred generations, the majority of the robots never flashed light when they were near the food. The robots also evolved to become either highly attracted to, slightly attracted to, or repelled by the light.

Because robots were competing for food, they were quickly selected to conceal this information,” the authors add.

The researchers suggest that the study may help scientists better understand the evolution of biological communication systems.

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.