Skip to Content
MIT News magazine

High-Tech Tailoring

“Nanostitching” makes better materials.

MIT researchers have found a way to fuse together materials that gives a whole new meaning to the concept of sewing. “Nanostitching” uses carbon tubes only billionths of a meter thick to reinforce advanced materials for airplane skins and more.

Super glue Brian Wardle shows an advanced composite material held together by nanostitching.

The resulting composites could be more than 10 times as strong as their conventional counterparts. They are also more than a million times as conductive, meaning that they could better protect aircraft against damage from lightning strikes. And since only a tiny quantity of nanotubes produces the desired effects, they aren’t expected to add much to the overall cost of the materials.

The advanced materials currently used for many aerospace applications are composed of layers, or plies, of carbon fibers that are glued together. But that glue can crack. Though engineers have explored a variety of ways to reinforce the bond between the layers by stitching, braiding, weaving, or pinning them together, all these processes are problematic. The relatively large stitches or pins penetrate and damage the carbon-fiber plies themselves, defeating the purpose.

Enter Brian Wardle, SM ‘95, PhD ‘98, an assistant professor of aeronautics and astronautics, who got the idea of trying nanotubes. Using computer models, “we convinced ourselves that reinforcing with nanotubes should work far better than all other approaches,” he says. His team then developed techniques for creating the nanotubes and incorporating them into aerospace composites. They describe their work in the April issue of the Journal of Composite Materials.

In nanostitching, each carbon-fiber layer is impregnated with polymer glue. Forests of trillions of nanotubes aligned perpendicular to the layers are placed between them, and the resulting composite is heated. This converts the glue, which is semisolid at room temperature, into a resin that is sucked into the forests of nanotubes by capillary action. Because the nanotubes are just a thousandth the diameter of the carbon fibers, they don’t affect the fibers themselves. Instead, they fill the spaces around the fibers to “sew” the layers together, strengthening the bond between them as the polymer glue hardens.

Nanotubes are “the strongest fibers by weight known to humankind,” Wardle says. Nanostitching puts them “in the place where the composite is weakest, and where they’re needed most.”

Keep Reading

Most Popular

Conceptual illustration showing a file folder with the China flag and various papers flying out of it
Conceptual illustration showing a file folder with the China flag and various papers flying out of it

The US crackdown on Chinese economic espionage is a mess. We have the data to show it.

The US government’s China Initiative sought to protect national security. In the most comprehensive analysis of cases to date, MIT Technology Review reveals how far it has strayed from its goals.

Image of workers inspecting solar panels at a renewable energy plant
Image of workers inspecting solar panels at a renewable energy plant

Renewables are set to soar

The world will likely witness a wind and solar boom over the next five years, as costs decline and nations raise their climate ambitions.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

travelers walk through Ronald Reagan Washington National Airport
travelers walk through Ronald Reagan Washington National Airport

We won’t know how bad omicron is for another month

Gene sequencing gave an early alert about the latest covid variant. But we'll only know if omicron is a problem by watching it spread.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.