Skip to Content

How to Predict Pandemics

A new technique could dramatically improve our ability to determine whether a pandemic is likely at the beginning of an infectious outbreak.

In the last couple of weeks, mathematical epidemiologists around the world have been racing to determine how swine flu will spread.

The puzzle centres on a quantity known as the reproduction number (R0) which is a fundamental property of any infectious disease. It is defined as the expected number of new infections caused by a typical individual during the whole period of his or her infection, in a totally susceptible population.

R0 is important because epidemiologists can use it to determine the final size of an outbreak. But estimating R0 in the early stages of an outbreak, when it is most useful, is hugely difficult.

Today, Bahman Davoudi from the British Columbia Centre for Disease Control in Canada and a few friends propose a way to estimate R0 far earlier in an outbreak than has been possible before. And that may have important implications for the way governments control the spread of new diseases in future.

The new method determines R0 using three quantities that can be measured early in an outbreak. The first is the infection rate probability which, for viral diseases, is related to the viral load of infectious individuals and can be calculated from their blood serum.

The second is the removal rate probability: how quickly individuals are removed from the scenario through factors such as death, quarantine and other means to reduce social contact. This is also relatively straightforward to measure early on.

The final factor is the rate at which new cases appear which again can be measured early in an outbreak.

What’s interesting about this method is that Davoudi and co then use this information to see how the disease spreads using our existing knowledge of social networks–for example, how often people meet and where. That’s what makes the approach so powerful.

They’ve tested the model in various simulations and say it gives them an accurate value for R0 right at the start of an outbreak. What’s more, it’s possible to calculate R0 in real time as the outbreak begins.

That could make this a hugely valuable tool for determining how common diseases spread such as less virulent forms of flu and also for planning a response to the next outbreak on the local, national and even the global scale.

Ref:arxiv.org/abs/0905.0728: Early Real-time Estimation of Infectious Disease Reproduction Number

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.