Skip to Content
Uncategorized

Silk That’s Tougher Than Spidey’s

Adding small amounts of metal to biomaterials including spider silk can dramatically enhance their toughness, new research shows.

Spider silk outperforms almost all man-made textiles. It has both high extensibility and tensile strength, meaning that it can be stretched a great deal before the stress causes it to break. Now, taking inspiration from another creepy-crawly creature, materials scientists have found a way to make spider silk even tougher by impregnating it with small amounts of metal. Their method, described in a paper published this afternoon in the journal Science, should work with other biomaterials too.

Since the 1980s, materials scientists have hypothesized that some protein-based natural materials, including the jaws of the marine worm Nereis, gain strength from the incorporation of metals such as zinc and copper. But until now, incorporating metals into proteins in the lab has proved challenging. Researchers at the Max Planck Institute of Microstructure physics used atomic-layer deposition to pulse zinc, titanium, and aluminum ions into spider silk. The resulting materials have greatly enhanced toughness over natural spider silk and could be used to make protective clothing or even new structural materials. To demonstrate that the method is a general one, they also used metal ions to toughen eggshell membranes, which are mostly made up of the protein collagen.

The researchers aren’t certain just how the metal ions are incorporated into the protein structure. However, they found that the protein-metal composites are tougher than the sum of their parts, which is in keeping with other recent research in biomaterials. Materials scientists looking to nature for inspiration have previously found that many of the strongest biomaterials are composites with nanoscale structural features. For example, researchers recently made a tough ceramic by mimicking the nanoscale structure of mother-of-pearl. The natural material combines brittle, bricklike layers of calcium carbonate held together with a soft but elastic protein glue. The resulting material is tougher than either constituent.

Keep Reading

Most Popular

How Rust went from a side project to the world’s most-loved programming language

For decades, coders wrote critical systems in C and C++. Now they turn to Rust.

The inside story of how ChatGPT was built from the people who made it

Exclusive conversations that take us behind the scenes of a cultural phenomenon.

Design thinking was supposed to fix the world. Where did it go wrong?

An approach that promised to democratize design may have done the opposite.

Sam Altman invested $180 million into a company trying to delay death

Can anti-aging breakthroughs add 10 healthy years to the human life span? The CEO of OpenAI is paying to find out.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.