Skip to Content

Obama to Sign Stem Cells Order on Monday

The long-awaited reversal will lift federal funding restrictions on embryonic stem cell research.
March 6, 2009

President Obama has finally indicated that he will make good on his campaign promise to end federal funding restrictions on embryonic stem cell research. The restrictions, put in place by George W. Bush in 2001, specifically limited federal funding for embryonic stem-cell research to a small number of cell lines already in existence, leaving scientists who wanted to conduct cutting-edge research in this area scrambling for private money.

According to an article from Reuters:

President Barack Obama, who opposes limits on federal funding of stem cell research, will sign an executive order related to the issue on Monday, an administration official said on Friday.

The official could not confirm the details of what Obama would sign, but advisers had previously said he favored lifting the eight-year limitation on funding of human embryonic stem cell research imposed by his predecessor, President George W. Bush.

The official also said Obama would make an announcement about a broader initiative to restore scientific integrity to government processes.

A piece I wrote in February on the expected reversal outlines the potential benefits for researchers:

Once the restriction is lifted, labs funded by federal dollars will be allowed to use most of the estimated 600 stem-cell lines that have been created around the globe. Researchers broadly agree that the newer lines, which were derived using more refined methods, are superior to the older ones. Using only the old lines is like “being required to use Microsoft Word 1998,” says Jeanne Loring, director of the Center for Regenerative Medicine at the Scripps Research Institute, in La Jolla, CA.

In addition, the earlier lines were derived using animal products, making them largely unfit for therapeutic use. “There are hundreds of embryonic stem-cell lines out there that have been made under the best conditions, and some of them are patient ready,” says John Gearhart, director of the Institute for Regenerative Medicine at the University of Pennsylvania, in Philadelphia. “They have greater utility, performance, and safety than [the Bush-approved] lines.”

Scientists will also be able to study cell lines that are genetically encoded for specific diseases–perhaps one of the most promising near-term uses of embryonic stem cells. (None of the Bush-approved lines have these qualities.) “One of the clear opportunities that has not been available are lines generated from embryos that carry mutations for Huntington’s disease, amyotrophic lateral sclerosis (ALS), and cystic fibrosis,” says Story Landis, director of the National Institute for Neurological Disorders and Stroke, in Bethesda, MD, and chair of the NIH’s Stem Cell Task Force. These cells provide unprecedented access to the molecular processes underlying disease; they can be prodded to develop into the cell type affected in a specific disease, such as motor neurons in ALS, so that scientists can watch the disease unfold at a cellular level. These cells can also be used to screen new drugs.

Keep Reading

Most Popular

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.