Political scientists have long studied the news cycle, tracking which people and topics drive coverage and for how long. But the sheer volume of news outlets made it hard to quantify their results.
Researchers at Cornell University are trying to get a quantitative handle on how news stories proliferate. Computer scientist Jon Kleinberg reasoned that instead of trying to sort items from blogs and news sites into arbitrary categories, he could home in on quotes to identify their topics computationally. But references to a quote might extract different phrases from it, change its tense, or paraphrase it, resulting in dozens of different versions. So Kleinberg and his colleagues developed algorithms that determine family resemblances between strings of words in different articles.
The researchers are now canvassing about a million online news items a day. Focusing on quotes might exclude some relevant items, but it helps identify the types of stories that prove most popular and the websites that report on them first. The researchers have found that with the exception of a handful of professional political blogs that are the fastest to sniff out a story, mainstream media sites drive coverage, converging on a story two and a half hours before blogs react. But mainstream sites are also quick to abandon stories, while blog interest can persist for days.

Multimedia
A chart (also below, here as a pdf) of online buzz words.
Pop chart: This graph depicts the 50 phrases that generated the most buzz online in the last three months of the 2008 presidential campaign. The vertical axis indicates the number of Web items featuring some version of the phrase posted hourly; the horizontal axis shows fluctuation over time. Each phrase has an associated color, some labeled with phrase excerpts.
Credit: Jure Leskovec, Lars Backstrom, and Jon Kleinberg
Keep Reading
Most Popular

The dark secret behind those cute AI-generated animal images
Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Inside Charm Industrial’s big bet on corn stalks for carbon removal
The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

The hype around DeepMind’s new AI model misses what’s actually cool about it
Some worry that the chatter about these tools is doing the whole field a disservice.

How Charm Industrial hopes to use crops to cut steel emissions
The startup believes its bio-oil, once converted into syngas, could help clean up the dirtiest industrial sector.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.