Skip to Content
Computing

Growing Nanotube Forests

Carefully grown carbon-nanotube arrays could be the basis of new energy-storage devices and chip-cooling systems.
February 24, 2009
The intricate pattern above is made of carbon nanotubes grown on a silicon wafer patterned with a catalyst. The wafer is placed inside a hot chamber that’s then filled with ethylene or another carbon-containing gas. On the parts of the wafer coated with the catalyst, the pure tubes of carbon shoot up at great speed; a tree developing at an equivalent rate, Hart says, would be growing at 500 miles per hour.
In this greatly magnified image, small groups of nanotubes, each tube only 5 to 10 nanometers in diameter, can be seen bridging cracks in the structure.
Intramolecular forces cause carbon nanotubes to stick to each other. As the nanotubes shoot up, they may tug on their neighbors, speeding their growth. But if reaction conditions aren’t optimal–if too much or too little of the catalyst is activated, for example–this stickiness (among other factors) may cause the nanotubes to form tangles, curlicues, fault lines and other structures.
By exploiting these different tendencies, Hart can make more complex structures like the curved “fingers” above, which might be used as sensing probes.

Deep Dive

Computing

Erik Prince wants to sell you a “secure” smartphone that’s too good to be true

MIT Technology Review obtained Prince’s investor presentation for the “RedPill Phone,” which promises more than it could possibly deliver.

Corruption is sending shock waves through China’s chipmaking industry

The arrests of several top semiconductor fund executives could force the government to rethink how it invests in the sector.

Inside the software that will become the next battle front in US-China chip war

The US has moved to restrict export of EDA software. What is it, and how will the move affect China?

Hackers linked to China have been targeting human rights groups for years

In a new report shared exclusively with MIT Technology Review, researchers expose a cyber-espionage campaign on “a tight budget” that proves simple can still be effective.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.