Skip to Content

Fool’s Gold for Solar Panels

Researchers identify promising materials for supplying the world’s electricity needs.
February 23, 2009

One of the best materials for making cheap solar cells is iron pyrite (better known as fool’s gold), according to researchers at the University of California, Berkeley, and Lawrence Berkeley National Laboratory.

The researchers recently published an article in Environmental Science and Technology that surveys 23 semiconducting materials with properties that make them promising for converting sunlight into electricity. They evaluated the cost and abundance of these materials to determine which would work well for low-cost solar cells that could be made in numbers large enough to supply the world’s electricity needs. Today’s solar cells are mostly made from silicon–which is costly to refine and purify–or from thin films of cadmium telluride, which contain relatively rare or toxic elements, making it difficult or impossible to scale them up to provide all of the world’s electricity.

The researchers argue that research should be directed at materials that are cheap and abundant enough to easily supply the world’s energy needs. Iron sulfide (pyrite), or fool’s gold, stood out from all the other options, followed closely by amorphous silicon, a material used in some solar cells today. They estimate that these materials could provide 100 to 1,000 times the world’s current electricity needs.

But there may be a catch. While in theory, fool’s gold may shine as a solar-cell material, achieving the theoretical performance levels will be challenging. From another study published in 2000:

About 20 years ago pyrite (FeS2) was proposed as a promising candidate for [prospective] usage as photovoltaic absorber material for thin film solar cells. Among its physical properties–the very high absorption coefficient and a suitable energy bandgap (Eg≈0.95 eV) for photovoltaic energy conversion–also its nontoxicity and its composition from abundant elements were considered as particular advantages of pyrite.

However, the promises could not be fulfilled. Though the quantum efficiencies and the photocurrents were reasonably high for single crystalline pyrite samples, the open circuit voltages never exceeded about 200 mV at room temperature, much too low compared to the band gap of pyrite. The highest efficiency reported so far is about 2.8 %.

Keep Reading

Most Popular

This startup wants to copy you into an embryo for organ harvesting

With plans to create realistic synthetic embryos, grown in jars, Renewal Bio is on a journey to the horizon of science and ethics.

VR is as good as psychedelics at helping people reach transcendence

On key metrics, a VR experience elicited a response indistinguishable from subjects who took medium doses of LSD or magic mushrooms.

This nanoparticle could be the key to a universal covid vaccine

Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.