Skip to Content

Taking a Cell’s Temperature

A temperature-sensitive fluorescent dye may provide insights into the cellular origins of disease.
February 11, 2009

Looking beyond the genetics and proteomics of individual cells to examine properties that might seem less important can actually lead to some interesting results.

Fluorescence reveals temperature changes inside living cells. Credit: ACS

For example, researchers who poked cells with the tip of an atomic-force microscope (AFM) found that aggressive cancer cells are softer than their healthy counterparts–a property that may help them journey through the circulatory system to spread the disease. In this way, AFM technology, traditionally one of the tools of mechanical engineers and materials scientists, may help doctors determine how aggressive a patient’s cancer is. As TR reported last week, the same microscopy technique is also being used to study osteoarthritis in its early stages.

Now researchers at the University of Tokyo have developed an imaging probe that takes individual cells’ temperature to within half a degree centigrade. As the temperature rises, the probe–a green fluorescent dye encased in a nanogel–shines more brightly. The Japanese researchers haven’t worked out how measuring a cell’s temperature might help clinicians deal with disease. But the findings were somewhat surprising, according to an outside researcher contacted by Chemistry World. The article quotes Prasanna de Silva from the University of Queens, who was not involved in the research:

“I think people might have felt before that temperature was not worth measuring,” [says] de Silva, “because we expect it to be held constant most of the time. We are beginning to realise that, while the cell’s buffering mechanisms do eventually work, there are short-term local effects. So if you can watch a cell in small spatial detail, with good time resolution then you can pick up on things which wouldn’t be seen otherwise.”

The temperature-sensitive probe is described this week in Journal of the American Chemical Society. The researchers speculate that diseased cells may run slightly hotter because of increased metabolism, and they hope to formulate the temperature probe so that cells can be monitored as they grow.

Last year, I wrote about another research group using voltage-sensitive dye nanoparticles to study the electrical fields inside cells, which can be as strong as lightning bolts. It’s not yet clear just what the implications of either imaging technique will be. But for the voltage-sensing story, I talked to Piotr Grodzinski, director of the National Cancer Institute Alliance for Nanotechnology in Cancer, who emphasized the importance of studying cancer at the cellular level. Here’s a snippet from that article:

Grodzinski says that many developments in cancer research over the past few years have been “more reactive,” working toward developing diagnostics for catching the disease in its earlier stages and for better predicting to which drugs patients will respond. Despite how far cancer treatments have come, the way that cancer progresses at the cellular level is still not very well understood. With a better understanding, researchers hope to further improve diagnostics and personalized care. “This development represents an attempt to start using nanoscale tools to understand how disease develops,” says Grodzinski.

Keep Reading

Most Popular

What to know about this autumn’s covid vaccines

New variants will pose a challenge, but early signs suggest the shots will still boost antibody responses.

DeepMind’s cofounder: Generative AI is just a phase. What’s next is interactive AI.

“This is a profound moment in the history of technology,” says Mustafa Suleyman.

Human-plus-AI solutions mitigate security threats

With the right human oversight, emerging technologies like artificial intelligence can help keep business and customer data secure

Next slide, please: A brief history of the corporate presentation

From million-dollar slide shows to Steve Jobs’s introduction of the iPhone, a bit of show business never hurt plain old business.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.