Repulsive Force Could Eliminate Nanofriction
When two objects are so close together that the distance between them is about the same size as quantum fluctuations called virtual particles, they’re pulled together. This effect, caused by the Casimir force, is not something that humankind has had to worry about until recently. But as researchers develop nanomechanical devices for communications and computation, so-called “stiction” has emerged as a potential stumbling block that might, for example, limit the density of memory chips. But there’s a flip side to the Casimir force that might enable, rather than hinder, nano devices. Hendrik Casimir, who described his eponymous force in 1948, and Evgeny Lifshitz, who expanded his work, predicted that at slightly larger distances, this force should turn repulsive. Now researchers at Harvard University and the National Institutes of Health have seen this repulsive force in the lab for the first time.

The researchers reversed the Casimir force through their choice of materials. Whether the force is attractive or repulsive, it turns out, depends on the relative dielectric permittivities of the two surfaces and of the medium that lies between them. (Dielectric permittivity is a material property that describes how a material interacts with electrical fields.) When the researchers brought together a gold-coated sphere about 40 micrometers in diameter and a silica plate, both submerged in the liquid bromobenzene, they measured a repulsive Casimir force. The gold sphere was attached to an atomic force microscope, which was used to detect this repulsion. These results are described in the journal Nature.
These results suggest that it should be possible to create stictionless, friction-free nanomechanical devices based on what the researchers call quantum levitation. It’s not yet clear what applications will be found for quantum levitation, but according to a press release from Harvard, the researchers have filed a U.S. patent covering nano devices based on the phenomenon. Think friction-free ball bearings and ultrasensitive chemical detectors.
The Harvard researchers were led by Federico Capasso, a physicist who developed the first quantum-cascade laser at Bell Labs in the mid-1990s. He has also been featured in our 10 Emerging Technologies section in 2007 for his work on optical antennas.
Keep Reading
Most Popular
The inside story of how ChatGPT was built from the people who made it
Exclusive conversations that take us behind the scenes of a cultural phenomenon.
Sam Altman invested $180 million into a company trying to delay death
Can anti-aging breakthroughs add 10 healthy years to the human life span? The CEO of OpenAI is paying to find out.
ChatGPT is about to revolutionize the economy. We need to decide what that looks like.
New large language models will transform many jobs. Whether they will lead to widespread prosperity or not is up to us.
GPT-4 is bigger and better than ChatGPT—but OpenAI won’t say why
We got a first look at the much-anticipated big new language model from OpenAI. But this time how it works is even more deeply under wraps.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.