Repulsive Force Could Eliminate Nanofriction
When two objects are so close together that the distance between them is about the same size as quantum fluctuations called virtual particles, they’re pulled together. This effect, caused by the Casimir force, is not something that humankind has had to worry about until recently. But as researchers develop nanomechanical devices for communications and computation, so-called “stiction” has emerged as a potential stumbling block that might, for example, limit the density of memory chips. But there’s a flip side to the Casimir force that might enable, rather than hinder, nano devices. Hendrik Casimir, who described his eponymous force in 1948, and Evgeny Lifshitz, who expanded his work, predicted that at slightly larger distances, this force should turn repulsive. Now researchers at Harvard University and the National Institutes of Health have seen this repulsive force in the lab for the first time.

The researchers reversed the Casimir force through their choice of materials. Whether the force is attractive or repulsive, it turns out, depends on the relative dielectric permittivities of the two surfaces and of the medium that lies between them. (Dielectric permittivity is a material property that describes how a material interacts with electrical fields.) When the researchers brought together a gold-coated sphere about 40 micrometers in diameter and a silica plate, both submerged in the liquid bromobenzene, they measured a repulsive Casimir force. The gold sphere was attached to an atomic force microscope, which was used to detect this repulsion. These results are described in the journal Nature.
These results suggest that it should be possible to create stictionless, friction-free nanomechanical devices based on what the researchers call quantum levitation. It’s not yet clear what applications will be found for quantum levitation, but according to a press release from Harvard, the researchers have filed a U.S. patent covering nano devices based on the phenomenon. Think friction-free ball bearings and ultrasensitive chemical detectors.
The Harvard researchers were led by Federico Capasso, a physicist who developed the first quantum-cascade laser at Bell Labs in the mid-1990s. He has also been featured in our 10 Emerging Technologies section in 2007 for his work on optical antennas.
Deep Dive
Uncategorized

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.
If they ever hit our roads for real, other drivers need to know exactly what they are.

Maximize business value with data-driven strategies
Every organization is now collecting data, but few are truly data driven. Here are five ways data can transform your business.

Cryptocurrency fuels new business opportunities
As adoption of digital assets accelerates, companies are investing in innovative products and services.

Yann LeCun has a bold new vision for the future of AI
One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.