Skip to Content

How Cocoons Are Turned Into Optical Devices

A simple process turns cocoons into optical devices with biological applications.
December 22, 2008
Preda stirs cut-up cocoons in a salt solution. The cocoons are boiled in a beaker over a hot plate to dissolve the protein that holds them together, sericin. The silk fibers, now pure fibroin protein, will be dissolved in another salt solution.
Using a syringe, Preda loads the syrupy silk solution into a dialysis cartridge. The cartridge will be placed in a beaker of water, which will draw the salt out through the cartridge’s clear window. Finally, Preda will use a syringe to suck out the pure water-fibroin solution left behind, which she’ll store in the fridge.
To make a hologram, a researcher deposits the water-based solution of pure silk fibroin onto a mold with a pipette. Fibroin makes a good optical material because it’s translucent when it dries, and it conforms well to both the nanoscale and macro­scale details of molds like this one.
After drying for several hours, silk optical devices like the hemoglobin-containing card in the researcher’s left hand can be peeled off their molds. Each iridescent square has been molded into a different device. One is a diffraction grating that can act as an oxygen sensor.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.