Skip to Content

From the Labs: Materials

New publications, experiments and breakthroughs in materials science–and what they mean.
December 22, 2008

Self-Assembling Optics
Nanoparticles form sophisticated devices

Silver crystals: These octahedral silver nanoparticles suspended in ethanol are assembling into a large crystal. The density of the particles, which changes from top to bottom, determines what colors pass through.

Source: “Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals”
Peidong Yang et al.
Nano Letters
8: 4033-4038

Results: Researchers at the University of California, Berkeley, led by Peidong Yang, have shown that silver nanoparticles with very regular octahedral shapes pack together under the influence of gravity to form large crystals. The crystals’ optical properties can be varied by changing the amount of time the nanoparticles have to pack together, which affects the spacing between them.

Why it matters: Light striking the crystals causes the formation of what’s called a plasmon, a wave passing through the electrons at the crystals’ surfaces. Plasmonic crystals could be used to guide light in optical computers or to increase the sensitivity of chemical sensors. They could also serve as lenses for superhigh-resolution microscopy. Using conventional lithography to etch patterns in materials can achieve a similar effect but is more expensive.

Method: Using methods that Yang developed previously, the researchers grew silver nanoparticles in solution, then suspended them in ethanol inside a test tube. By allowing the nanoparticles to pack together for longer or shorter periods of time before evaporating the ethanol, the researchers produced densely and loosely packed crystals, whose optical properties they studied. The crystals transmitted particular bands of radiation while blocking others, and the frequency varied according to how tightly packed the crystals were.

Next steps: The Berkeley group plans to build a large plasmonic crystal on the surface of a six-inch wafer to establish that the crystals can be formed on a scale large enough for many of their potential applications.

Practical Plastic Solar Cells
New dyes and electrolytes improve efficiency of Grätzel cells

Source: “New Efficiency Records for Stable Dye-­Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes”
Michael Grätzel et al.
Journal of Physical Chemistry C
112: 17046-17050

Results: Scientists at the Swiss Federal Institute of Tech­nology and the Chinese ­Academy of Sciences have used nonvolatile electrolytes and a new dye to improve the sta­bility of flexible dye-­sensitized solar cells (also called Grätzel cells) while achieving efficiencies of up to 10 percent.

Why it matters: Dye-­sensitized solar cells could be cheaper than conventional solar cells, because they’re made of inexpensive materials and can be printed rapidly. They can also be made flexible. But they have been difficult to manufacture and unreliable to operate, because the electrolytes that carry current within them are volatile and must be carefully encapsulated. By using nonvolatile electrolytes, the researchers have made Grätzel cells that are more reliable and potentially cheaper to manufacture. What’s more, the new dye allows the researchers to use the non­volatile electrolytes while maintaining efficiencies of near 10 percent, a level necessary to compete with conventional solar cells.

Method: The researchers coupled two previously synthesized nonvolatile electrolytes with a new dye that absorbs more light. That reduced both the amount of dye required and the thickness of the solar cells, making it easier for electrical charges to move out of the cell.

Next steps: The cells remain stable when exposed to light and high temperatures for 1,000 hours. The researchers are now testing them at higher temperatures, studying their long-term performance in a large solar panel, and working with corporate partners to commercialize the technology.

Keep Reading

Most Popular

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

masked travellers at Heathrow airport
masked travellers at Heathrow airport

We still don’t know enough about the omicron variant to panic

The variant has caused alarm and immediate border shutdowns—but we still don't know how it will respond to vaccines.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.