Skip to Content

Cells as Circuits

Techniques borrowed from computer engineering could help identify promising drug targets.
December 22, 2008

Source: Effat Emamian and Ali Abdi

The map of the human genome was expected to spark a revolution in drug discovery. But cells’ behavior is determined by the interactions of hundreds of different proteins in what are known as signaling pathways, and figuring out which interactions go awry in disease has proved much harder than people thought.

Now, a study led by scientists affiliated with the New Jersey Institute of Technology (NJIT) has used circuit analysis to identify the molecules that play the biggest roles in cells’ signaling pathways. The researchers believe that their work can save drug researchers time and money by identifying promising drug targets.

The diagram above represents only half of a pathway that regulates the production of a molecule called CREB (red), which is involved in memory formation. The pathway is represented as a set of logic gates, the basic elements of digital circuits. An OR gate, for example, produces an output if it receives either of its inputs: here, that means that either of two molecules regulates the production of the next molecule in the pathway. Though each step in the pathway has been well studied in biology labs, the diagram provides a quantitative purchase on the network as a whole.

One molecule in this network, PP2B (blue), is being investigated as a target for schizophrenia drugs. But the researchers’ analysis shows that PP2B is less important to CREB regulation than P/Q-type calcium channels (orange). PP2B plays a role in many other pathways, so targeting it could have unfortunate side effects. Calcium channels are the target of drugs already approved for other disorders, so they may also be a safer target for schizophrenia drugs.

The researchers applied their approach to three different signaling pathways, and their predictions agreed with experimental results. Effat Emamian, who led the research, has founded a company that markets signaling-pathway analyses to drug companies.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.