Skip to Content

The Brain Unveiled

A new imaging method offers a spectacular view of neural structures.
October 20, 2008
This image, generated from a living human brain, shows a subset of fibers. The red fibers in the middle and lower left are part of the corpus callosum, which connects the two halves of the brain.
Mapping Diffusion

Neural fibers in the brain are too tiny to image directly, so scientists map them by measuring the diffusion of water molecules along their length. The scientists first break the MRI image into “voxels,” or three-dimensional pixels, and calculate the speed at which water is moving through each voxel in every direction. Those data are represented here as peanut-shaped blobs. From each shape, the researchers can infer the most likely path of the various nerve fibers (red and blue lines) passing through that spot.
Another image of the peanut-shaped blobs that represent the diffusion of water molecules along neural fibers in the brain. From each shape, the researchers can infer the most likely path of the various nerve fibers (red and blue lines) passing through that spot.
The result is a detailed diagram like that of the brain stem shown here.
Emotion Control

To study specific circuits in the brain, scientists can isolate a subset of fibers. The circuit shown here represents the core of the human limbic system, which plays a central role in emotion and memory. The thick green bundle enclosed by the red circle is the cingulum bundle, which connects different parts of the cortex. The C-shaped blue fibers to the right, called the uncinate fasciculus, connect the temporal lobe, which regulates language and memory, with the frontal lobe, an area involved in higher executive function and planning. Damage to this circuit can result in the inability to form new memories and the loss of emotional control.
A Long Road

The complete brain of an owl monkey is shown here.
This is a subset of fibers from the brain of an owl monkey.
This image is the isolated optic tract, which relays visual signals from the eyes to the visual cortex, from the brain of an owl monkey. The blue lines at lower right represent nerve fibers connecting the eyes to the lateral geniculate nucleus (marked by the white ball), a pea-size ball of neurons that acts as a relay station for visual information. Those signals are then sent to the visual cortex, at the back of the head, via the blue and purple fibers that arc across the brain.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.