Skip to Content

Longer-Lasting Artificial Eyes

An improved retinal implant stimulates neurons to restore sight.
September 25, 2008

For many blind or partially sighted people, implants that stimulate healthy nerve cells connected to their retinas could help restore some normal vision. Researchers have been working on such implants since the 1980s but with only limited success. A major hurdle is making an implant that can stay in the eye for years without declining in performance or causing inflammation.

Good looking: A new retinal implant sits mostly outside the eye. The coil around the iris receives wireless power and image data from a microcontroller that can be carried on a belt. The coil transmits data to electronics inside a waterproof titanium case (below). The electronics controls an electrode array (not visible) connected to nerves in the back of the retina.

Now researchers with the Boston Retinal Implant Project, which was spun out of MIT, Harvard Medical School, and the Massachusetts Eye and Ear Infirmary in 1988, have developed hardware they say overcomes such issues. The implants have been tested in animals, and the group plans to start human trials by 2010.

In retinal diseases such as acute macular degeneration and retinitis pigmentosa, the light-sensing cells of the retina may no longer work, even though the neurons that carry signals from these cells to the brain are still healthy. The Boston project uses an array of electrodes to stimulate these cells and reproduce a simplified visual image in the subject’s brain. A camera mounted on a pair of eyeglasses captures an image, which is rapidly processed by a microcontroller to produce a simplified picture. This is then wirelessly beamed to the implant, which activates 15 electrodes inside the eye. The implant also receives power wirelessly from the microcontroller.

In its current form, the implant can reproduce only a 15-pixel image, but the group is working on a version with around 100 pixels and hopes to get up to 1,000 eventually.

The latest implant has been successfully tested in pigs, whose eyes are comparable in size to our own. It hasn’t yet been tested in people, but the research group is confident it will restore enough vision to let people walk around unaided. The electrode array has previously been tested for short periods in patients who reported seeing clouds, red spots, and other images when the electrodes were activated one by one. “We know the concept works; now we need to get the device prepared,” says Shawn Kelly, a visiting scientist at MIT who works for the Boston project.

Previously, the device was housed in a flexible plastic case wrapped around the outside of the eye. But over long time periods, the plastic absorbed water. The electronics inside the new device are housed within a waterproof titanium case similar to those used for heart pacemakers. The new retinal implant case is also the smallest ever made, and it has a large number of feed-through holes for the wires that connect to the electrode array, the wireless power component, and the data coil. Machine-milling such a small, intricate case posed a major challenge, says Kelly. But the new case makes for easier, safer surgery because it sits on the side of the eye, away from the entry point for the electrode array. It is also mechanically more stable, Kelly notes.

Other retinal implants sit completely inside the eye, which can cause biocompatibility issues. Kelly says the goal is to develop implants that last for years, so that patients can learn to process the images produced by the implant.

Another arm of the Boston research group led by John Wyatt, a professor of electrical engineering at MIT, is working on algorithms for converting the camera signal into an image the brain can more easily interpret. An initial goal is enabling people to see enough to walk around a room unaided, so the system’s software focuses on edge detection. The Boston group is also working on algorithms that help people recognize faces, which is a far more challenging problem.

Keep Reading

Most Popular

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

brain map
brain map

This is what happens when you see the face of someone you love

The moment we recognize someone, a lot happens all at once. We aren’t aware of any of it.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.