Skip to Content

Next-Generation Diagnostics

A startup can detect tiny traces of cancer markers in blood samples.

One of the loftier dreams of personalized medicine is to detect and eliminate tumors before they become life threatening–before they are even visible on medical images. Now a Cambridge, MA, startup called Quanterix is developing an extremely sensitive protein-detection technology that can count single molecules–and could potentially detect the trace amounts of characteristic proteins that tiny tumors release into the blood.

Lab on a tip: Wells carved into the tip of an optical fiber allow researchers to detect single proteins in blood samples. Each well in this image is about 2.5 micrometers in diameter and sits at the tip of an individual thread of an optical fiber.

“The premise is to get diagnostics to the most sensitive level possible,” says David Walt, a chemist and Howard Hughes Medical Institute professor at Tufts University, who developed the Quanterix technology. Trace proteins in the blood could also reveal early signs of heart disease, Alzheimer’s, and other ailments, and enable noninvasive fetal diagnostics.

“If we could understand the baseline levels of proteins in the serum, it could be used to track the integrated health of a person over the course of life,” says Christopher Love, a chemical-engineering professor at MIT who is not involved with Quanterix.

With current clinical technologies, hospital labs can detect only the most abundant proteins–only a quarter of all those known to be present in the blood. Because proteins are present in the blood at a range of different concentrations spanning about 16 orders of magnitude, abundant proteins mask the rare ones. “It’s like trying to look for a slightly different piece of hay in the haystack,” says Forest White, a biological engineer at MIT.

Multimedia

  • Watch proteins light up inside an optical fiber.

The current detection limit is 10 picograms of protein per milliliter of blood. But Walt has developed a detection technique that allows him to count individual protein molecules present in the blood using specially treated optical fibers. A single optical fiber is a bundle made up of thousands of individual glass threads, each of which carries a distinct stream of light. By dipping optical fibers in acid, Walt etches them with tens of thousands of microwells, one at the tip of each thread. That effectively makes each fiber into a large array of nanoscale test tubes, each of which is then coated with thousands of protein-capturing antibodies.

The tip of the fiber is dipped into a droplet containing a blood sample and a protein-targeting enzyme. If the protein is present in the blood trapped inside an individual well, it will be captured between the antibody and the enzyme like the meat inside a sandwich. When Walt sends light down the optical fiber, the sandwiched antibody and enzyme undergo a reaction that produces red or yellow fluorescent light. The light travels back up the optical fiber.

By counting how many microwells light up, Walt can determine the concentration of a protein in a blood sample. In an unpublished proof-of-principle experiment, Walt says that his optical-fiber method was able to detect a human cancer biomarker in cow’s blood at concentrations 250 times lower than that possible using clinical techniques.

So little is known about the 800 or more remaining blood proteins that fall under current detection limits that scientists can only speculate on their clinical relevance. “We’re talking to clinicians to figure out what makes sense to test for,” says Walt. Once the company picks target proteins, they’ll draw on blood samples archived at hospitals and try to correlate protein levels with clinical outcomes. “Every time a more sensitive technology has become available, it has opened up new diagnostics and led to advances in treatment,” says Walt.

Early detection can have a downside. “We don’t want to scare people by telling them, ‘You have an early tumor,’” says Walt. “It may be that the immune system takes care of small tumors.” So any potential biomarkers will have to be carefully validated. But even if the new method only leads to a test for a single cancer biomarker, Walt hopes that it will improve survival rates for a large number of people.

“We believe this has the potential for transforming diagnostics,” Walt says.

Keep Reading

Most Popular

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

masked travellers at Heathrow airport
masked travellers at Heathrow airport

We still don’t know enough about the omicron variant to panic

The variant has caused alarm and immediate border shutdowns—but we still don't know how it will respond to vaccines.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.