Skip to Content
Climate change and energy

Whale-Inspired Wind Turbines

Mimicking the bumps on humpback-whale fins could lead to more efficient wind turbines.

Marine scientists have long suspected that humpback whales’ incredible agility comes from the bumps on the leading edges of their flippers. Now Harvard University researchers have come up with a mathematical model that helps explain this hydrodynamic edge. The work gives theoretical weight to a growing body of empirical evidence that similar bumps could lead to more-stable airplane designs, submarines with greater agility, and turbine blades that can capture more energy from the wind and water.

Finspiration: The bumps on the leading edge of the humpback whale’s flipper give it a hydrodynamic advantage. Researchers are discovering that similar bumps could make wind turbines, fan blades, and airplane wings more efficient.

“We were surprised that we were able to replicate a lot of the findings coming out of wind tunnels and water tunnels using relatively simple theory,” says Ernst van Nierop, a PhD candidate at the School of Engineering and Applied Sciences at Harvard. He coauthored the study with mathematics professor Michael Brenner and researcher Silas Alben.

The advantage of the humpback-whale flipper seems to be the angle of attack it’s capable of–the angle between the flow of water and the face of the flipper. When the angle of attack of a whale flipper–or an airplane wing–becomes too steep, the result is something called stall. In aviation, stall means that there isn’t enough air flowing over the top surface of the wing. This causes a combination of increased drag and lost lift, a potentially dangerous situation that can result in a sudden loss of altitude. Previous experiments have shown, however, that the angle of attack of a humpback-whale flipper can be up to 40 percent steeper than that of a smooth flipper before stall occurs.

In a paper recently published in Physical Review Letters and highlighted in the journal Nature, the Harvard research team showed that the bumps on the humpback flipper, known as tubercles, change the distribution of pressure on the flipper so that some parts of it stall before others. Since different parts of the flipper stall at different angles of attack, abrupt stalling is easier to avoid. This effect also gives the whale more freedom to attack at higher angles and the ability to better predict its hydrodynamic limitations.

The researchers also found that the amplitude of the bumps plays a greater role than the number of bumps along a flipper’s leading edge. “The idea is, you could make an aircraft that’s much harder to stall and easier to control,” says van Nierop. For example, fighter jets could be designed to be more acrobatic without risk of stall-induced crashes. In the water, naval submarines could be made more nimble.

The Harvard research validates the first controlled wind-tunnel tests of model flippers, conducted five years ago at the U.S. Naval Academy, in Annapolis, MD, where it was shown that stall typically occurring at a 12-degree angle of attack is delayed until the angle reaches 18 degrees. In these tests, drag was reduced by 32 percent and lift improved by 8 percent.

That research was detailed in a 2004 study in collaboration with West Chester University and Duke University. “This [Harvard work] basically shows that theory and empirical measurements are close, and adds greater weight to our original assertion on the function of the tubercles,” says Frank Fish, a biology professor at West Chester and a lead author of the original study.

Already, attempts are being made to incorporate the tubercle design into commercial products. Fish is president of a venture based in Toronto, Ontario, called WhalePower, which has begun demonstrating the advantages of tubercles when they’re integrated into the leading edges of wind-turbine and fan blades.

Prototypes of wind-turbine blades (see image below) have shown that the delayed stall doubles the performance of the turbines at wind speeds of about 17 miles per hour and allows the turbine to capture more energy out of lower-speed winds. For example, the turbines generate the same amount of power at 10 miles per hour that conventional turbines generate at 17 miles per hour. The tubercles effectively channel the air flow across the blades and create swirling vortices that enhance lift.

WhalePower, based in Toronto, Ontario, is testing this wind-turbine blade at a wind-testing facility in Prince Edward Island. The bumps, or “tubercles,” on the blade’s leading edge reduce noise, increase its stability, and enable it to capture more energy from the wind.
Credit: WhalePower

Stephen Dewar, director of research and development at WhalePower, says that ongoing tests at the Wind Energy Institute of Canada, in the province of Prince Edward Island, have shown the tubercle-lined blades to be more stable, quiet, and durable than conventional blades. “The turbine has survived being hit by the edge of a hurricane, and it survived wind-driven snow and ice,” he says.

WhalePower has also shown in demonstrations that tubercle-lined blades on industrial ceiling fans can operate 20 percent more efficiently than conventional blades can, and they do a better job at circulating air flow in a building. The results were dramatic enough to convince Canada’s largest maker of ventilation fans to license the design, which will appear in a new line of products scheduled for release at the end of April.

“This licensing agreement with the fan company is great,” says Fish. “It basically shows one of the many potential applications for this technology. The union of biology and engineering through biomimetics will make future innovations possible.”

The Harvard study reaches the same conclusion. “It is possible that the lessons learned from humpback-whale flippers will soon find their way into the design of special-purpose wings, hydrofoils, as well as wind turbine and helicopter blades.”

Deep Dive

Climate change and energy

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Harvard has halted its long-planned atmospheric geoengineering experiment

The decision follows years of controversy and the departure of one of the program’s key researchers.

Why hydrogen is losing the race to power cleaner cars

Batteries are dominating zero-emissions vehicles, and the fuel has better uses elsewhere.

Decarbonizing production of energy is a quick win 

Clean technologies, including carbon management platforms, enable the global energy industry to play a crucial role in the transition to net zero.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.