Mind Control
In July 2006, a paper in Nature described how a paralyzed man with a chip implanted in his brain used his mind to move a computer cursor and a robotic arm. The chip is one of the most successful examples to date of a neural prosthetic. Such devices pick up neural signals from a part of the brain involved in a given activity, such as the neurons in the motor cortex that fire as a person imagines moving a computer mouse by hand. Then they interpret those signals and direct a physical action accordingly–say, moving a cursor to the left.

Neural prosthetics promise to empower people with neurodegenerative diseases and spinal-cord injuries. But because they can involve many combinations of brain regions and hardware, each new prototype has needed its own software. Designing new algorithms from scratch slows development, says Lakshminarayan Srinivasan, SM ‘03, PhD ‘06, a neurosurgery research fellow at the Massachusetts General Hospital and a medical student in the Harvard-MIT Division of Health Sciences and Technology. So Srinivasan is developing general algorithms that could lead to software compatible with all such devices.
Technologies for detecting brain activity include functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy–each of which generates different kinds of data. Output devices might include TVs, computers, or robotic arms, each of which has different user commands.
Srinivasan’s algorithms apply to any combination of devices because they operate at a higher level of abstraction. Instead of working just with EEG inputs reflecting electrical activity or MRI inputs showing blood flow in the brain, the algorithms treat all neural activity as either continuous or binary (a simple on/off switch) and translate it into continuous or discrete commands. (In driving a car, for example, gradually pressing the accelerator is a continuous command; shifting gears is a discrete command.)
Srinivasan says these algorithms should help researchers develop new neural prosthetics and quickly repair any problems that crop up.
Keep Reading
Most Popular

The hype around DeepMind’s new AI model misses what’s actually cool about it
Some worry that the chatter about these tools is doing the whole field a disservice.

These materials were meant to revolutionize the solar industry. Why hasn’t it happened?
Perovskites are promising, but real-world conditions have held them back.

Why China is still obsessed with disinfecting everything
Most public health bodies dealing with covid have long since moved on from the idea of surface transmission. China’s didn’t—and that helps it control the narrative about the disease’s origins and danger.

A quick guide to the most important AI law you’ve never heard of
The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.