Skip to Content

The Longevity Pill?

Drugs much more powerful than the resveratrol found in red wine will be tested to treat diabetes.
November 28, 2007

A novel group of drugs that target a gene linked to longevity could provide a way to turn back the clock on the diseases of aging. The compounds are 1,000 times more potent than resveratrol, the molecule thought to underlie the health benefits of red wine, and have shown promise in treating rodent models of obesity and diabetes.

Revving up resveratrol: A new class of drugs 1,000 times more potent than resveratrol, the compound thought to underlie the health benefits of red wine, shows promise in treating diabetes.

Human clinical trials to test the compounds in diabetes are slated to begin early next year, according to Sirtris Pharmaceuticals, based in Cambridge, MA, which developed the drugs. “As far as I’m aware, this is the first anti-aging molecule going into [testing in] man,” says David Sinclair, a biologist at Harvard Medical School, in Boston, and cofounder of Sirtris. (See “The Enthusiast.”) “From that standpoint, this is a major milestone in medicine.”

The new drugs target an enzyme called SIRT1, which belongs to a class of proteins known as sirtuins that have been shown to lengthen life span in lower organisms. Sinclair and others theorize that activating these enzymes, which play a role in cell metabolism, mimics the effects of caloric restriction–a low-calorie but nutritionally complete diet that dampens disease and boosts longevity in both invertebrates and mammals.

For several years, scientists have been on the hunt for a drug that could bring the benefits of caloric restriction without the strict diet. (See “The Fountain of Health.”) Last fall, Sinclair and his colleagues took a first step when they showed that mice given resveratrol, a molecule that activates SIRT1, stayed healthy when fed high-fat foods. (See “A Life-Extending Pill for Fat Mice.”) But there was a catch: mice were dosed with the human equivalent of more than 1,000 wine bottles’ worth of the compound, an amount not possible for humans to imbibe or take in pill form.

Now a team at Sirtris, led by CEO Christoph Westphal, has identified a group of compounds that activate SIRT1 1,000 times more potently than resveratrol does. According to findings published today in the journal Nature, the compounds bind to the enzyme and dramatically increase its activity. Because the new compounds are more powerful, much lower doses are likely needed to achieve the same beneficial effects. “We believe doses needed in humans for the novel compounds are probably on the order of hundreds of milligrams, similar to many marketed drugs,” says Westphal.

The Sirtris team focused initial animal tests on type 2 diabetes, a disease that results from the impaired ability to use insulin, and whose risk increases with aging. They found that the drugs improved insulin sensitivity and blood glucose levels in three rodent models: diet-induced obese mice, genetically obese mice, and a rat model of type 2 diabetes. “Theoretically, this is a perfect drug,” says Charles Burant, head of the Michigan Metabolomics and Obesity Center at the University of Michigan, in Ann Arbor. “Animals seem to have no change in weight, yet they have improved metabolic status.”

Still, Burant and others caution that it’s too soon to tell how well the drug will work in humans, whose metabolism drastically differs from that of rodents. Sirtris is also testing a resveratrol-like compound in clinical trials for treating diabetes, with initial results expected later this year or early next year.

Both Sinclair and Westphal have high hopes for the drugs, in part because they appear to mimic the effects of caloric restriction, which has been shown to delay or slow the progression of a variety of age-related diseases. So the novel SIRT1 activators might have the potential to treat illnesses ranging from Alzheimer’s disease to heart disease to cancer. “The big news here is that maybe all big diseases of aging fall into the same category and can be treated with sirtuin activators,” says Leonard Guarente, an MIT biologist whose lab discovered the first sirtuin gene. Guarente recently joined Sirtris’s advisory board.

Initial studies suggest that activating SIRT1 can slow neurodegeneration, and tests of the compounds’ impact on animal models of different diseases are ongoing.

However, many questions remain to be answered. While Sinclair and Guarente argue that the new findings support the idea that sirtuins lie at the heart of caloric restriction’s health and longevity benefits, not everyone agrees. And the issue that has garnered the most media attention–whether or not such compounds will provide a molecular fountain of youth–is still unclear. While the diabetes research is promising, says Burant, “the life-extension part of this story is still incomplete.”

In fact, that question may remain open for a few more years. Sinclair’s team is testing the compounds’ effect on life span, “but we may know if they can treat a disease in humans before we know if mice live longer,” he says.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.