Skip to Content

DOE Announces $375 Million for Bioenergy Research

Three centers will use the funding to boost the efficiency of cellulosic-ethanol production.
June 26, 2007

The hope for better biofuels got $375 million brighter today thanks to a massive new funding program announced by the U.S. Department of Energy. The highly competitive grants, given out over the next five years, will establish bioenergy research centers at the Oak Ridge National Labs, in Tennessee; the Great Lakes Bioenergy Research Center, in Wisconsin; and the Lawrence Berkeley National Laboratory, in California. The centers will search for innovative ways to make cellulosic-ethanol production economically competitive with gasoline.

“For biofuels to put a real dent in our energy consumption without affecting the national food supply and without adding to carbon-dioxide emissions, we must learn to make ethanol from cellulose,” said secretary of energy Samuel Bodman at a press conference today. “Only by inventing radical new technologies will we be successful.”

The United States produced five billion gallons of ethanol from corn last year–about 4 percent of all national gasoline production. However, deriving ethanol from corn is itself an energy-intensive process, and it can’t be sustained in large enough volumes to meet the president’s goal of reducing gasoline consumption by 20 percent in the next 10 years. Grasses and agricultural waste such as cornstalks could potentially provide a better feedstock: they produce much more biomass per acre than corn, with less energy expenditure. However, these plant sources of ethanol require extensive preprocessing to release sugars from the cellulose in them, making the procedure too expensive to compete with traditional gasoline and corn-based ethanol. (See “Biofuels: Beyond Corn.”)

Scientists at the three new centers will try to overcome these hurdles using genomics tools. For example, they plan to catalogue the genes involved in building plant cell walls in order to engineer plants that can be more easily broken down before fermentation. Scientists will also scour the genomes of fungi and microbes for novel cellulase enzymes that are cheaper and more efficient than the synthetic enzymes in use today.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.