Skip to Content

Nanoglue for Electronics

Researchers have found organic molecules that can act as an effective and cheap glue to stick together tiny electronic components.

Researchers at the Rensselaer Polytechnic Institute, in Troy, NY, have found that certain nanometer-long organic molecules can bond two surfaces that normally don’t stick together well. Surprisingly, the adhesive power increases when the nanoglue is exposed to very high temperatures.

Nano superglue: Organic molecules made of a chain of carbon and hydrogen atoms with sulfur (blue) at one end and silicon (green) at the other hold together copper and silicon dioxide. The molecules organize themselves and line up next to each other, and their adhesive strength increases at very high temperatures of up to 700 ºC.

The molecules could be used as an inexpensive, easy-to-apply glue in a variety of applications. For example, the nanometer-thick glue could be used to hold together tiny electronic components, as transistors and wires on computer chips continue to shrink, says Ganapathiraman Ramanath, a materials science and engineering professor who led the study, which was published in Nature last week.

The nanoglue, which belongs to a class of compounds called organosilanes, consists of a chain of carbon and hydrogen atoms with sulfur at one end and silicon at the other. The molecular chain normally disintegrates at temperatures above 300 to 400 ºC. But Ramanath and his colleagues have found that when they sandwich the molecules between copper and silicon dioxide, the molecules not only bind together the two materials, but the bond strengthens at higher temperatures. At room temperature, the resulting bond is three times stronger than a direct bond between copper and silica. At 700 ºC, the bond is 10 times stronger than normal.

One advantage of the glue is how little of it is needed. Similar gluing strengths can be achieved with very thick adhesive layers but not with such thin layers, Ramanath says. Since a single layer of the organosilane molecules arranged side by side holds the copper and silica, the thickness of the adhesive layer is the length of a single molecule: close to one nanometer. At 35 cents a gram, the new glue is affordable. And it should be easy to apply because the molecules tend to organize themselves in the proper orientation on the surface “like soldiers,” Ramanath says. “They all stand right next to each other and line up quite closely.”

Moreover, the researchers expect that they can tailor the nanoglue to adhere to different materials. By attaching appropriate chemical groups at the two ends of the molecular chain, researchers could engineer new types of organosilane molecules to glue together other dissimilar materials, such as insulators and semiconductors, or metal and semiconductors.

The organosilane’s increasing adhesive strength at higher temperatures is anomalous and “contrary to conventional wisdom,” says Om Nalamasu, a vice president and chief technology officer at Applied Materials, based in Santa Clara, CA, which supplies fabrication equipment to the semiconductor industry. “This might have neat applications and could open some new ideas and new concepts.”

One important application could be gluing copper wires that connect the various components on computer chips. Copper wires are deposited on insulating silicon-dioxide layers on a computer chip to keep the wires’ signals from mixing with each other. But copper doesn’t stick tightly to the silicon dioxide, and copper molecules diffuse into the silica. “There is a big need to isolate the interfaces chemically,” Ramanath says. “You don’t want them to mix, yet you want adhesion.”

Chip manufacturers currently use at least 10-nanometer-thick layers of materials such as tantalum or titanium between the copper and silicon dioxide. But as device sizes on high-performance computer chips plunge into the nanometer range, the new nanoglue, which is 10 times thinner, would be an ideal replacement. “With increasing miniaturization, you can’t afford to waste real estate on things that don’t do anything other than keep things together,” Ramanath says.

Keep Reading

Most Popular

wet market selling fish
wet market selling fish

This scientist now believes covid started in Wuhan’s wet market. Here’s why.

How a veteran virologist found fresh evidence to back up the theory that covid jumped from animals to humans in a notorious Chinese market—rather than emerged from a lab leak.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

masked travellers at Heathrow airport
masked travellers at Heathrow airport

We still don’t know enough about the omicron variant to panic

The variant has caused alarm and immediate border shutdowns—but we still don't know how it will respond to vaccines.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.