Skip to Content

Nano Solution

Nanoparticles show promise as an ingredient in solar cells, where they could absorb light and generate electrons. But photovoltaic devices made from nanoparticles are still far less efficient than conventional silicon cells. This is partly because some of the liberated electrons never reach an electrode. Now researchers at the University of Notre Dame in Indiana have doubled the efficiency with which these cells convert ultraviolet light to electricity. They deposited single-walled carbon nanotubes on an electrode to form a scaffold for electron-­generating titanium dioxide particles. A carbon nanotube (cylindrical object, left) collects an electron (shown in pink) and provides a more direct route from the nanoparticles (round objects) to the electrode (right). The cells convert ultraviolet light to electrons more efficiently than commercial silicon cells, but they do not yet work with visible light.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.