Skip to Content

Cheaper Diagnostics

A mix of “bar-coded” particles could detect multiple compounds at once.

By simultaneously scanning for thousands of genes or proteins in a biological sample, doctors could diagnose many diseases in a single step. But today’s DNA or protein microarrays are too expensive for widespread clinical use, in part because their manufacture is a complex, multistep process.

A potentially cheaper tool for detecting telltale DNA and proteins appears on this page: capsule-shaped polymer particles, each 180 micrometers long. Each particle can be loaded with a specific biomole­cule so that one half of the particle fluoresces when it detects a disease target. Imprinted with bar-code-like patterns of holes, the particles can be read optically; they could serve as detectors for more than a million distinct biological targets. Technicians with the right optical equipment could, in theory, mix the particles with a sample and read off the results.

Unlike microarrays, the particles can be manufactured using a single, integrated process, which was developed by MIT chemical engineer Patrick Doyle, doctoral student Daniel ­Pregibon, and colleagues at MIT and Harvard Medical School. The process begins with two adjacent 100-­micrometer-­wide streams of fluid. One of the streams contains biomolecules that will attach to disease targets. A pulse of ultraviolet light passes through a stencil and strikes the streams, causing precursors of polyethylene glycol in both to solidify into a single particle. The stencil gives one half of each particle an identifying pattern of holes.

Jay Groves, a chemist at the University of California, Berkeley, calls the synthesis a “clever” step toward low-cost diagnostics. One remaining challenge is to develop a more practical system for reading the particles: Doyle and colleagues use a bulky, impractical fluorescence microscope.

Keep Reading

Most Popular

Geoffrey Hinton tells us why he’s now scared of the tech he helped build

“I have suddenly switched my views on whether these things are going to be more intelligent than us.”

ChatGPT is going to change education, not destroy it

The narrative around cheating students doesn’t tell the whole story. Meet the teachers who think generative AI could actually make learning better.

Meet the people who use Notion to plan their whole lives

The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.

Learning to code isn’t enough

Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.