Nano Memory
Researchers at Caltech and the University of California, Los Angeles, have reached a new milestone in the effort to use individual molecules to store data, an approach that could dramatically shrink electronic circuitry. One hundred times as dense as today’s memory chips, the Caltech device is the largest-ever array of memory bits made of molecular switches, with 160,000 bits in all. In the device, information is stored in molecules called rotaxanes, each of which has two components. One is barbell shaped; the other is a ring of atoms that moves between two stations on the bar when a voltage is applied. Two perpendicular layers of 400 nanowires deliver the voltage, reading or writing information. It’s a big step forward from earlier prototype arrays of just a few thousand bits. “We thought that if we weren’t able to make something at this scale, people would say that this is just an academic exercise,” says James Heath, professor of chemistry at Caltech and one of the project’s researchers. He cautions, however, that “there are problems still. We’re not talking about technology that you would expect to come out tomorrow.”

Keep Reading
Most Popular

Anti-aging drugs are being tested as a way to treat covid
Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

These materials were meant to revolutionize the solar industry. Why hasn’t it happened?
Perovskites are promising, but real-world conditions have held them back.

The baby formula shortage has birthed a shady online marketplace
Desperate parents just want to feed their babies. They’re having to contend with misinformation, price gouging, and scams along the way.

I tried to buy an Olive Garden NFT. All I got was heartburn.
Our newest issue spells out what you need to know about the dizzying world of digital money.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.