Skip to Content

Bizarre Bacterial Creations

Banana-scented bacteria, engineered to order, are just one offering at this weekend’s International Genetically Engineered Machine competition.
November 3, 2006

Anyone who has ever smelled E. coli bacteria knows that they smell bad. Putridly bad. So, a group of student bioengineers at MIT set out to sweeten the scent of this commonly used lab bacteria. The team constructed its creation from a collection of biological “parts”–bits of DNA that, when inserted into living organisms, can make the organisms glow, detect light, and perform a number of other unusual functions. The team will showcase its sweet-smelling bug this weekend at the International Genetically Engineered Machine competition (iGEM) at MIT, along with 37 other student groups from around the world.

E. coli bacteria engineered to smell like ripe bananas are just one of the designed biological devices to be presented at this weekend’s synthetic-biology competition. (Credit: Istockphoto/Douglas Freer)

While the projects are executed largely by undergraduate students (with guidance from faculty and graduate-student advisors), the designs represent some of the most complex biologically engineered machines to date–and they promise to further the field of synthetic biology, a newly emerging discipline that views living systems from an engineering point of view.

The MIT team, for example, tosses out wacky applications for its technology: minty-fresh foot fungus or baker’s yeast that smells of bananas. But its real goal is the construction of functional biological parts. “The key idea here is to develop a library of composable parts which we think of in the same way as Lego blocks,” says Tom Knight, an engineer at MIT who cofounded the competition with MIT bioengineer Drew Endy. (Both advise the MIT team.) “These parts can be assembled into more-complex pieces, which in many cases are functional when inserted into living cells.”

To create the scented bacteria, the students looked for different genes that convert chemicals naturally made by bacteria into chemical precursors of aromatic compounds, as well as genes that convert the precursors to the aromatics themselves – methyl salicylate, commonly known as oil of wintergreen, and isoamyl acetate, a component of the ripe-banana smell. The genes were then hooked up to genetic controllers, known as promoters, which determine when and where that gene is turned on. A gene from a plant, for example, might be controlled by a promoter from bacteria.

The various DNA components, collected from fellow scientists and from a genetic repository housed at MIT, were then embedded in a circular string of DNA and inserted into bacteria. The end result is a new strain of E. coli that smells of mint and bananas. The team also eliminated the gene responsible for E. coli’s natural stink.


One of the most important goals of the competition is to stock the shelves of the Registry of Standard Biological Parts, a sort of hardware store of genetic parts housed at MIT. “The idea is to standardize parts and the way they are put together, in the same way electrical and mechanical parts are standardized,” says Knight. “And to be able to give people a reasonable assurance that the parts, when put together, will function as they were designed to.” During the course of its project, the MIT team has deposited about a dozen newly made parts into the registry for use by other members of the synthetic-biology community.

As the number and complexity of parts grow, both students and industry and academic scientists can make ever-more-complicated designs. The machines entered in the 2006 iGEM competition have doubled in size in the past two years, from about 6,000 to 12,000 letters of DNA. “These [projects] represent the largest designed genetic systems that have ever been developed,” says Chris Voigt, a bioengineer at the University of California, San Francisco, who is advising one of the student teams. “Understanding how to push the size and complexity of these systems is what is going to have an impact.”

Entries in this year’s competition come from as far away as Africa and Japan, and will include a range of strange creations. Some are practical, such as a biosensor that can detect arsenic concentrations for use in tainted wells. Others are more whimsical, such as a bacterial night-light that glows when it gets dark. The oddest creation, perhaps, is the entry from the University of Freiberg, in Germany: a microscopic, DNA-based clothing line, christened “Barbie Nanoatelier” by the team.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.