Skip to Content
MIT News magazine

Ann Graybiel, PhD '71

MIT neuroscience professor asks why bad habits are so hard to break.

Ann Graybiel, PhD ‘71, wants to know why good habits are so hard to make and bad habits so hard to break. After completing her bachelor’s degree at Harvard University, she began studying neuroanatomy at MIT in the Department of Psychology and Brain Science. MIT was one of the few places in the country where researchers were asking behavioral questions and expecting to find cellular answers.

MIT Professor Ann Graybiel, PhD ‘71, won the National Medal of Science. (Courtesy of Donna Coveney/MIT.)

“At that time, it was really daunting to approach the big questions that any of us would ask – How can we see? How can we have language? – because the techniques were so weak,” says Graybiel, MIT’s Walter A. Rosenblith Professor of Neuroscience. “Several people at MIT had the temerity to do that. Now, almost everybody does.”

The particular nerve cells Graybiel studies are in the brain’s basal ganglia. Because both Parkinson’s and Huntington’s diseases are caused by malfunctions of the basal ganglia, previous researchers believed that these regions controlled only physical motion and gesture. Graybiel’s research has advanced the radical idea that basic elements of learning and habit formation – and even the sense of accomplishment people feel when they figure out a puzzle – are rooted in the basal ganglia. Her research has led her to explore the nature of drug addiction, and her insights could also help explain illnesses such as obsessive-compulsive disorder and Tourette’s syndrome, as well as Parkinson’s and Huntington’s.

The field of systems neuroscience is still being invented, Graybiel says: “What’s really been fun [is that] once we began to find out about these brain regions, we have continually had to learn and develop new methods. It’s been challenging.” As for her current research, “we want to understand what happens in the brain when we make habits and when we break them,” Graybiel says. “We’re looking at genes so we can pinpoint molecules in those mechanisms. And we look at the electrical activity of neurons. We think that these modes of brain-function mechanism hold the key to a lot of therapeutic possibility.”

Graybiel lives in Lincoln, MA, with her husband, Jim Lackner ‘66, PhD ‘70, a professor of physiology at Brandeis University; they enjoy sports and music. Graybiel, who joined the MIT faculty in 1973, became an investigator at the McGovern Institute in 2001. She was awarded the National Medal of Science, the nation’s highest science award, in 2002.

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

digital twins concept
digital twins concept

How AI could solve supply chain shortages and save Christmas

Just-in-time shipping is dead. Long live supply chains stress-tested with AI digital twins.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.