Skip to Content
Climate change

Free Electricity from Nano Generators

Throw away your batteries. Tiny nanowires could power medical implants, even your iPod.
April 27, 2006

Today’s portable electronics (except for self-winding watches and crank radios) depend on batteries for power. Now researchers have demonstrated that easy-to-make, inexpensive nanowires can harvest mechanical energy, possibly leading to such advances as medical implants that run on electricity generated from pulsing blood vessels and cell phones powered by nanowires in the soles of shoes.

A graph showing spikes of electrical discharge as the nanowires are scanned. (Courtesy of Zhong Lin Wang, Georgia Tech.)

“When you walk, you generate 67 watts. Your finger movement is 0.1 watt. Your breathing is one watt. If you can convert a fraction of that, you can power a device. From the concept we’ve demonstrated, we can convert 17-30 percent of that,” says Zhong Lin Wang, professor of materials science at Georgia Tech and one of the researchers of the work, published in the journal Science.

Their results confirm a theory: zinc oxide nanowires will show a powerful piezoelectric effect, which is the production of electricity in response to mechanical pressure. Ordinarily the positive and negative charges of zinc and oxygen ions in these crystalline nanowires cancel each other out. But when the wires, which are chemically grown to stand on end on top of an electrode, bend in response to, say, a vibration, the ions are displaced. This unbalances the charges and creates an electric field that produces a current when the nanowire is connected to a circuit.

[For illustrations and images, click here.]

Although each nanowire alone produces very little power, Wang says, “with simultaneous output from many nanowires, we can generate high power,” enough to run a small medical implant. The work reported in Science involved only single nanowires, but Wang says his lab has already developed technology to harvest power from multiple nanowires.

Because the chemical process by which the wires can be grown is inexpensive, at some point it may be practical to produce large arrays that are capable of providing enough power for consumer electronics. “We can grow these on polymer substrates at very low cost,” Wang says. “Our goal is to one day put these into people’s shoes so you can generate electricity when you’re walking.”

Before any devices powered by nanowires can be developed, though, researchers will need to find ways to connect all the nanowires to circuits. That, says Yi Cui, professor of materials science and engineering at Stanford University, will be a challenge but should be feasible. Indeed, Wang estimates that based on his current progress, prototype devices will be working within five years.

One early application of the “nanogenerators” is providing power for a glucose sensor implanted under the skin of the arm. Such a sensor would transmit blood sugar readings to a wrist watch and, says Cui says, one day the sensor implant could automatically releases insulin when needed.

Piezoelectric materials are frequently used in microscale devices. What’s new about this application is the ease with which nanogenerators can be made at the nanoscale, says Jun Liu, researcher at the Pacific Northwest National Laboratory. Such thin wires can be bent more than bulk zinc oxide without breaking – making it possible to apply more strain and so generate more electricity. “I think it’s a very significant piece of work,” Liu says. “[Wang] has done things that people suspected were possible, but never made work.”

Deep Dive

Climate change

These three charts show who is most to blame for climate change

Getting to the bottom of which countries have contributed most to climate change is complicated, but a few pieces of data can help.

Inside Alphabet X’s new effort to combat climate change with seagrass

A previously unrevealed program would use cameras, computer vision, and machine learning to track the carbon stored in the biomass of the oceans.

Super-hot salt could be coming to a battery near you

New battery chemistries can help unlock more renewable energy for the grid.

Power beaming comes of age

How power beaming could change the way we power everything from satellites to mobile phones and reduce carbon emissions.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.