Skip to Content

Nano Antenna

Gold nanospheres show a path to all-optical computing.
December 1, 2005

Vast amounts of data zip across the Internet each day in the form of light waves conveyed by optical fibers. But our computers still rely on electrical signals traveling through metal wires, which have much lower bandwidth.

Optical interconnects that could guide light through the labyrinth of a circuit board would increase computing speed and save power, but so far they haven’t made it out of the lab.

New research, however, may enable engineers to build nanoscale antennae that turn light into a different sort of wave that can move through metal; the result could be data transmission speeds that are orders of magnitude higher than today’s.

The key to the approach is a gold sphere just 50 nanometers in diameter. A Rice University team led by Peter Nordlander and Naomi Halas has shown that such a sphere, when positioned within a few nanometers of a thin gold film, will behave like a tiny antenna that can transmit or receive light. Light of specific wavelengths excites particles called plasmons inside the nanosphere. This in turn induces a “plasmon wave” in the gold film, which could be converted back into light when it reaches another nanosphere.

Variations on the gold nanosphere might make it possible to exploit materials already used in computer chips, such as copper and aluminum, as superfast optical interconnects, says Mark Brongersma, a materials scientist at Stanford University. A light wave encoding data would hit a metal nanosphere, generating a plasmon wave that would travel through a metal strip or wire, carrying the data with it.

A huge benefit of the approach, Brongersma says, is how much easier the spheres are to make than other specialized antennae whose manufacture requires complex and expensive optical-lithography techniques. “The beautiful thing is you can make them in large quantities,” Brongersma says.

The Rice team’s next step: using hollow gold “nanoshells” rather than solid spheres to expand the range of wavelengths of light they can use. And to further examine the practicality of using the systems as optical interconnects in computer chips, they have begun a series of experiments with nanoparticles and thin wires rather than thin films.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.