Skip to Content

Metal-Cooled Computing

Liquid metal is one of several new technologies that one day may cool down super-fast PCs.
June 22, 2005

In many ways, Moore’s Law – the famous prediction by Gordon Moore, co-founder of chip manufacturer Intel, that microprocessor complexity will grow exponentially without an increase in price – has held for four decades. But that complexity has come with a hidden “cost”: heat.

Packing more and more components and circuits onto a chip requires more electrical power to run it. And most of that power turns into heat, so that the latest chips can quickly exceed 100 degrees Centigrade, if not properly cooled.

The problem is getting so serious that last year Intel canceled a high-speed-CPU project, in part because it found no practical way to cool down the energy-consuming chips (see accompanying Notebook). Overheated chips don’t work reliably, possibly leading to computer crashes, mangled files, graphical glitches, and even permanent damage.

“There is a great demand for compact, cost-effective cooling solutions,” says Suresh V. Garimella, director of  the Cooling Technologies Research Center at Purdue University in Indiana. According to him, the fans traditionally used to cool personal computers are “reaching their limits.”

One potential solution to this growing problem is more commonly associated with nuclear reactors: liquid metal cooling. Spearheaded by NanoCoolers, a startup in Austin, TX, the technology takes advantage of a unusual compound of metals that remains liquid at room temperature. Currently, their mixture of gallium and indium (and a pinch of tin) flows freely at temperatures above 7 degrees C. And a new formula could go as low as minus 10 degrees C, according to product manager Mick Wilcox.

“This technology is one among a number of new and promising cooling solutions that are being proposed and pursued lately,” says Garimella.

The liquid metal flows in a loop around a PC or graphics card. First, it picks up heat from the top of the heated chip. Then the liquid gets pumped through pipes to a radiator (usually with a fan blowing on it), where the heat is released into the air. Finally, the cooled fluid circulates back to the chip.

The pump that moves the liquid metal around in the system is one of the invention’s main advantages over a rival technology, water cooling. Taking advantage of the metallic nature of the coolant, the pump pushes the liquid around electromagnetically. Unlike water cooling, the process requires no moving parts, consumes little power, and is silent. In a patent application, NanoCoolers even suggests powering the pump solely from the waste heat produced by the computer. While the liquid metal compound is non-toxic, according to Wilcox, it is corrosive to some metals, notably aluminum.

The attraction of liquid metal itself is its excellent conduction of heat. According to Sapphire Technology, which has adopted the NanoCoolers invention for a PC graphics card, it is 65 times more thermally conductive than water – and 1,600 times better than air cooling.

In short, liquid metal is able to absorb heat more rapidly, and thus cool down chips faster. This property has led to its use as an “ultimate” coolant in some nuclear reactors, which are cooled with liquid sodium or potassium, as well as in the manufacture of high-quality machine components, such as gas turbine blades, where the components are rapidly “cooled” to 660 C with molten aluminum to prevent the formation of defects.

“[Liquid metals] could certainly provide higher cooling capacities,” says Garimella. Concerning their practical applications, however, he is more cautious: “[It’s] very much a function of how they are implemented, and the controlling thermal resistance in the package.”

Indeed, the question remains whether difficulties with implementation will hinder this new technology from becoming a practical cooling solution for the PC. One competitor believes Sapphire Technology’s use of liquid metal technology has more to do with marketing. “Because of the increased cost, size, and weight of the cooler, we don’t think that this technology is ready for the market,” says Lester Lau, spokesperson for a rival graphics card manufacturer, Abit Computer, of Taiwan. “The marketing value is intriguing, but the downsides seem to outweigh the advantages at this point.”

An industry expert is also skeptical. “It’s a big jump, introducing so many new components that are not proven,” says Monem Alyaser, director of Applied Thermal Technologies, a Santa Clara-based engineering consultancy that has assisted in thermal design for Microsoft’s Xbox 360 and the Apple Powerbook Titanium. Alyaser believes that water cooling would be a better next step for the PC industry, because it is tried and tested (“It has been around as long as there have been radiators in cars”).

NanoCoolers’ Mick Wilcox counters that liquid metal has significant advantages over water cooling, including its quieter and more reliable electromagnetic pump, as well as the fact that it has the same or better cooling ability.

Currently, almost all products in the PC market use air cooling. In contrast, water cooling is restricted to kits for enthusiasts. In tests with a laptop, Wilcox says NanoCooler’s technology is about thirty percent more effective than a “heat pipe” air cooling system and five percent better than water cooling .

To be sure, such figures are considerably lower than expected, given the high thermal conductivity of liquid metal. The problem, says Wilcox, is in getting the heat out of the liquid metal before it is circulated back to the chip. Ultimately, that means using a radiator or fan to dump the heat energy into the surrounding atmosphere, the same method used in water and air cooling systems.

In fact, NanoCoolers is focusing its resources in other cooling technologies as well, notably, a thin-film, high-density version of traditional thermo-electrics to be used a variety consumer products. 

Meanwhile, graphics chip maker Sapphire says it will send its metal-liquid-cooled Blizzard graphics card to reviewers at magazines and online publications this summer – the first public demonstration of metal-cooled technology in a PC.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.