Exposing Digital Forgeries
Those wizards at Dartmouth’s Computer Science Department have come up with a clever technique for automatically detecting forged JPEG images.To quote from the abstract:We describe an efficient technique that automatically detects duplicated regions in a digital image. This technique works…
Those wizards at Dartmouth’s Computer Science Department have come up with a clever technique for automatically detecting forged JPEG images.
To quote from the abstract:
We describe an efficient technique that automatically detects duplicated regions in a digital image. This technique works by first applying a principal component analysis to small fixed-size image blocks to yield a reduced dimension representation. This representation is robust to minor variations in the image due to additive noise or lossy compression. Duplicated regions are then detected by lexicographically sorting all of the image blocks. We show the efficacy of this technique on credible forgeries, and quantify its robustness and sensitivity to additive noise and lossy JPEG compression.
Keep Reading
Most Popular
This new data poisoning tool lets artists fight back against generative AI
The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models.
Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist
An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.
Data analytics reveal real business value
Sophisticated analytics tools mine insights from data, optimizing operational processes across the enterprise.
Driving companywide efficiencies with AI
Advanced AI and ML capabilities revolutionize how administrative and operations tasks are done.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.