Accentuate the Positive
The automated telephone call centers companies use to reduce costs can drive customers crazy. A way to spot impatience in callers’ voices-and transfer them to human operators before they hang up-could ease the frustration. Shri Narayanan and Chul Min Lee at the University of Southern California have developed a system that distinguishes irritated from normal speech with up to 85 percent accuracy. Their program identifies specific acoustic features of speech that indicate stress, such as the pitch, energy, and duration of speech sounds, as well as word content and contextual information. The system “learned” what to look for through training on nearly 1,400 real phone calls. The team hopes to improve the software’s accuracy but says it could already benefit companies.
Keep Reading
Most Popular
The inside story of how ChatGPT was built from the people who made it
Exclusive conversations that take us behind the scenes of a cultural phenomenon.
How Rust went from a side project to the world’s most-loved programming language
For decades, coders wrote critical systems in C and C++. Now they turn to Rust.
Design thinking was supposed to fix the world. Where did it go wrong?
An approach that promised to democratize design may have done the opposite.
Sam Altman invested $180 million into a company trying to delay death
Can anti-aging breakthroughs add 10 healthy years to the human life span? The CEO of OpenAI is paying to find out.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.