Skip to Content

Shocking Genes

In a technique that could overcome a major hurdle to gene therapy, small electric jolts push therapeutic genes into the cells that need help.

Gene therapy holds promise for treating diseases from cystic fibrosis to diabetes. But safely and effectively delivering genes to the cells that need them has been the field’s biggest obstacle. Luyi Sen, a cardiologist at the University of California, Los Angeles’s David Geffen Medical School, has a technique that could help: she uses small electric shocks to “push” the genes into cells. Scientists have long employed electric shocks to transfer genes into cells in research labs, but the voltages used would damage whole organs. Sen has lowered those voltages by placing electrodes in contact with a patient’s tissues. She arranges 32 to 128 electrodes in a “basket” on a catheter or endoscope and threads the tube through blood vessels into the interior of an organ, where the basket is expanded. Therapeutic genes in solution are fed through another vessel, and tiny electric jolts induce cells to take up the genes. In tests on rabbit hearts, genes have been transferred at up to 75 percent efficiency. Today’s most popular gene delivery method, viruses made noninfectious, has top rates of only 70 percent and can cause dangerous immune reactions. Several firms have expressed interest in manufacturing Sen’s devices.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.