Skip to Content

Crystal Therapy

Nanocrystals help further gene therapy.
February 1, 2003

One of the reasons gene therapy has faltered so far is that it’s hard to get the right genes into cell nuclei safely. Genetically modified viruses are a common but less-than-ideal vehicle for the genes because the viruses can cause a fatal immune response. Looking for a way to deliver the genetic goods harmlessly and efficiently, cancer researcher Gayle Woloschak of Northwestern University Medical School and researchers at Argonne National Laboratory are turning to nanocrystals-particles a few billionths of a meter in diameter.

The tiny particles act as “scaffolding” for the genetic material and make it possible to attach other molecules, such as peptides, that can help guide the complex directly to a cell’s nucleus. In initial experiments, Woloschak and her coworkers used a small electrical stimulus to make the cell wall semipermeable, allowing the nanocrystals, which are only slightly wider than DNA, to slip through. Currently, the scientists are working on adding a navigational peptide to the scaffolding.

To make the crystals, Woloschak and her colleagues used titanium dioxide, a material that shouldn’t provoke the immune system. Nanocrystals are attractive also because they can bear multiple genes, a property that could simplify therapy for diseases caused by several malfunctioning genes, Woloschak says. The nanocrystals may also provide a way to knock out unwanted genetic material, she adds. The researchers would attach to the nanoparticle a short stretch of DNA that matches a defective gene sequence; once bound with the unwanted genetic material in the cell, the nanoparticle could be broken apart by light or x-rays, thereby snipping out the problematic DNA.

Although Woloschak says the group’s work is at least two years away from animal testing, nanoparticles’ potential is definitely beginning to crystallize. “The hope is that nanoparticles will be able to incorporate some of the useful features of a viral vector, like the localization peptides, without the concern that they’ll cause a negative immune reaction,” says Daniel Feldheim, a North Carolina State University chemist who is developing gold nanoparticles that may also be enlisted in gene therapy efforts.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.