Microbe Power
Leave organic sediments on the seafloor for 80 million years, and they might turn into crude oil. But some microbiologists and geobiologists aren’t willing to wait that long to exploit the sediments’ latent energy. They’re developing a simple, inexpensive fuel cell-just two disk-shaped electrodes and a connecting circuit-that generates electricity when planted in bottom-of-the-ocean muck. “The seafloor constitutes a ready-made battery,” says the Naval Research Laboratory’s Leonard Tender, who coinvented the device with Clare Reimers of Oregon State University.
The marine sediment along continental coasts is about two percent organic carbon, mostly from dead plankton. Microbes ingest and oxidize the carbon, transferring sheared-off electrons to chemicals in the sediment. The transfer creates a voltage between the ocean bottom and the overlying seawater, a potential difference that generates a current when one electrode placed in the muck is joined together with another above it. Such devices, tested off the New Jersey and Oregon coastlines, have generated steady low-level power for nine months at a stretch. “Every indication is that they would have run forever,” says Tender.
An unexpected finding was that much of the power comes from the biological activity of bacteria, called Geobacter, that colonize the electrodes. These bacteria transfer electrons directly to the buried electrode rather than the surrounding sediment, according to recent studies by Derek Lovley, a microbiologist at the University of Massachusetts, Amherst.
The fuel cells can now generate about one watt of electricity-enough to power oceanographic instruments such as temperature sensors. That power level is “remarkable,” says Michigan State University microbiologist Greg Zeikus, who is working on similar microbial fuel cells for generating electricity from municipal wastewater. “That’s the target we all want to achieve.” Powering military surveillance devices is one possible application. Harbor pollution cleanup is another because, Tender says, the fuel cells accelerate the microbial decomposition of organic toxins.
Tender speculates that seawater fuel cells could even contribute clean, abundant energy to the nation’s power grid. Placing hundreds of the devices over deposits of frozen methane found in some coastal sea-floor sediments should, in theory, yield large electrical currents. “Right now we’re at the one-watt level,” says Tender. “But there’s no reason why any of this cannot be scaled up to the megawatt region in the right environment.”
Keep Reading
Most Popular
The inside story of how ChatGPT was built from the people who made it
Exclusive conversations that take us behind the scenes of a cultural phenomenon.
ChatGPT is about to revolutionize the economy. We need to decide what that looks like.
New large language models will transform many jobs. Whether they will lead to widespread prosperity or not is up to us.
Sam Altman invested $180 million into a company trying to delay death
Can anti-aging breakthroughs add 10 healthy years to the human life span? The CEO of OpenAI is paying to find out.
GPT-4 is bigger and better than ChatGPT—but OpenAI won’t say why
We got a first look at the much-anticipated big new language model from OpenAI. But this time how it works is even more deeply under wraps.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.