Skip to Content

Skeleton Recharge

Bringing artificial bones to life.

It’s not quite Mary Shelley’s image of a corpse brought to life by electricity, but biomedical engineers have found a way of using electricity to bring artificial bone to life. The method could one day yield bone replacement parts.

Bioengineer Rena Bizios at Rensselaer Polytechnic Institute uses carbon nanotubes-tubular molecules that are good electrical conductors-to deliver electricity to bone-forming rat cells deposited on a piece of polymer. Researchers have long known that electrical stimulation enhances bone growth, but it’s hard to deliver the electricity uniformly: new bone tends to clump around the electrodes delivering the charge. Bizios’s technique could solve that problem, though, since the nanotubes are embedded throughout the polymer. When the researchers turned on the electricity, the bone cells grew and began to deposit the proteins and calcium that give bone its strength. That the technique worked so well “was a great surprise,” says Bizios.

Researchers don’t know yet if the approach will ultimately yield uniform bone tissue, but the results are “very exciting and very promising,” says Antonios Mikos, a biomedical engineer at Rice University. While doctors can treat small bone injuries by surgically implanting patchlike materials, they can’t yet generate the large sections of bone that would be needed to replace a hip ravaged by osteoporosis, for example. Bizios’s material, on the other hand, opens up the possibility of quickly growing large sections of artificial bone in the lab using a patient’s own cells and nanotube-wired polymer scaffolding. Surgeons could then replace any damaged or diseased parts of a patient’s skeleton with the new bone.

Keep Reading

Most Popular

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

supermassive black hole at center of Milky Way
supermassive black hole at center of Milky Way

This is the first image of the black hole at the center of our galaxy

The stunning image was made possible by linking eight existing radio observatories across the globe.

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.