Skip to Content

Blood Vessel Booster

Biotech

Advances in tissue engineering augur a day when scientists can build a human kidney or heart right in the lab. But that day may still be decades away. One reason: an organ needs blood, and so far no one’s engineered a complete network of blood vessels. A University of Michigan team, however, has taken an important step in that direction, harnessing the body’s own resources to grow new vessels.

Most researchers have been trying to build blood vessels in much the same way they engineer organs-lining three-dimensional templates with cultured cells and growing them in incubators. But the Michigan team, led by materials scientist David Mooney, built a polymer material impregnated with growth proteins that coaxes the body to do the work. The researchers implanted the spongy material in rats, in dime-sized patches that released the proteins according to a careful schedule. The proteins-which normally play a role in tissue development-stimulated the rats’ cells to migrate into the material and organize themselves into new blood vessels that were as mature as the rats’ original ones.

“While we’re investigating this technology in the context of engineering liver tissue and bone tissue, it may be useful in other situations as well,” says Mooney. He envisions, for example, a patch that could be used to grow new vessels that restore blood flow to heart muscle damaged by a blocked artery-a condition for which about three million people annually undergo coronary bypass operations in the United States alone. MIT biomedical engineer Robert Langer sees similar potential applications in repairing damaged sections of livers or lungs. However, MIT biomedical engineer Linda Griffith cautions that the jump from lab to clinic could be tricky. “Proteins are inherently difficult to work with,” she says, and the precisely timed release of growth proteins so effective in rats may be hard to replicate in people.

Though no time frame for human studies has been set, the University of Michigan has licensed the material to Cambridge, MA-based biotech firm Curis. If further experiments prove successful, researchers could be that much closer to actually growing human organs.

Keep Reading

Most Popular

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

supermassive black hole at center of Milky Way
supermassive black hole at center of Milky Way

This is the first image of the black hole at the center of our galaxy

The stunning image was made possible by linking eight existing radio observatories across the globe.

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.