Skip to Content

Dusting for Cancer’s Protein "Fingerprint"

Biotech
November 1, 2001

Even before researchers finished sequencing the human genome, many shifted their focus to proteomics, the study of the proteins encoded in that sequence. Understanding how proteins work and how to manipulate them could provide new ways to diagnose and treat disease. This summer, proteomics took an important step toward medical application when the National Cancer Institute and the U.S. Food and Drug Administration began using proteomic tools as part of human trials for new cancer treatments.

In the three-year program, researchers will use tissue from biopsies to study how patients’ proteomic “fingerprints”-profiles of the proteins in particular cells-change during treatment. “This is the first time proteomics is being used during clinical trials with actual biopsy material,” says the FDA’s Emanuel Petricoin, codirector of the program. It’s also the first time researchers will be able to follow health-related changes in a patient’s protein profile over time. “I think it’s a great idea,” says Joshua LaBaer, director of the Institute of Proteomics at Harvard Medical School.

But it’s an ambitious idea as well, LaBaer cautions. “I’m worried the technology is not mature enough, and a lot of stuff will be missed,” he says. Indeed, detecting and analyzing these fingerprints is no easy task. Using a laser dissection device, the researchers extract cancerous, precancerous and normal cells from a tissue sample; special “protein chips” (see “Protein Chips,” TR May 2001) are then used to identify hundreds of proteins within each cell. Computers compare such fingerprints from dozens of cell types and hundreds of patients, looking for patterns associated with disease, remission and drug toxicity.

“Right now we aren’t making clinical decisions-we aren’t yet telling oncologists to change therapy,” Petricoin says. In two to three years, though, proteomic tests could be used to guide treatment, alerting a doctor when a drug is causing a toxic reaction, for example, before significant damage is done.

Keep Reading

Most Popular

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.