Skip to Content

Holographic Memory

How holographic data storage works.

Stackable storage. It’s the ultimate space saver, making order out of chaotic cabinets, closets, attics and garages. But until recently it had not made its way into the realm of computers, where megabytes of data are scattered on the face of a disk like millions of shoes across a bedroom floor. Now a few big-name media makers, including Lucent Technologies and IBM, are making important strides in developing optical holography, which stacks information throughout the thickness of a storage medium, instead of just writing it to the surface.

Holographic storage relies mainly on laser light and a photosensitive material-usually a crystal or a polymer-to save data. It works by splitting a laser beam in two. One beam contains the data and is referred to as the “object beam”; the other holds the location of the data and is known as the “reference beam.” The two beams intersect to create an intricate pattern of light and dark bands. A replica of this so-called interference pattern gets engraved three-dimensionally into the photosensitive material and becomes the hologram. To retrieve the stored data, the reference beam is shone into the hologram, which refracts the light to replicate the data beam.

The holographic technique packs data so tightly that one 12-centimeter disk could eventually hold a terabyte of data-about as much information as 200 DVDs. What’s more, holographic storage opens the possibility of reading and writing data a million bits at a time, instead of one by one as with magnetic storage. That means you could duplicate an entire DVD movie in mere seconds.

The idea of storing tons of data three-dimensionally was first proposed by Polaroid scientist Pieter J. van Heerden in the 1960s. But developing the technology was difficult, because the required optical equipment was large and expensive. A typical laser back then, for example, was two meters long. Today, lasers are measured in mere centimeters and are much cheaper.

Holographic storage equipment is not yet produced commercially, but the technology has the potential to spawn new devices and systems. It could supplant DVDs, allow people to save information on 3-D disks, and enable researchers to sift through enormous databases in the blink of an eye. The future may not be that far off, either. Recently, Lucent launched a new venture, InPhase Technologies, to develop holographic storage, and plans to have a product on the market in a couple of years.

Keep Reading

Most Popular

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

brain map
brain map

This is what happens when you see the face of someone you love

The moment we recognize someone, a lot happens all at once. We aren’t aware of any of it.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.