Skip to Content

Quantum Leap

Each year, the size of transistors shrinks, thereby improving performance. Yet transistors must be big enough to allow electrons to pass through. Preparing for an inevitable impasse, Toshiba recently demonstrated a transistor that can turn on and off based on the movement of a single electron. Unlike other experimental quantum-level transistors, the device can operate at room temperature. It’s also the first successful hybrid circuit, mixing single-electron transistors with traditional metal-oxide transistors, which are required to boost the weak quantum-level signal. Chips based on the circuit should offer blazing performance and low power consumption. Before building a full-fledged processor, researchers face challenges such as finding a way to protect the chip from the disrupting effects of stray electromagnetic fields, electrical discharges and physical movement. Hybrid chips should be available commercially by 2010. -C. Conti

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.