Skip to Content
Uncategorized

Finer Networking

The more finely you can slice the optical spectrum into distinct signal-carrying channels, the more data you can send through an optical fiber. That’s the idea behind wavelength division multiplexing, which has brought tremendous data-carrying capacity to fiber-optic communications systems. Now Columbia, MD-based Essex has developed a variation on this technology designed to improve the lower-capacity optical networks extending from intercity fiber backbones into metropolitan areas. Essex’s “Hyperfine” technology subdivides each optical channel into 50 to 100 subchannels, separated by less than a hundredth of a nanometer. So far, Essex has demonstrated this spacing over a wavelength band of about 0.1 nanometers, but the company plans to demonstrate an industry-standard 0.4-nanometer version early this year. In addition to providing better performance over existing fiber, the company claims the technology can better “tune” or control each of these channels, providing more flexible deployment of optical lines to specific corporate customers.

Deep Dive

Uncategorized

Our best illustrations of 2022

Our artists’ thought-provoking, playful creations bring our stories to life, often saying more with an image than words ever could.

How CRISPR is making farmed animals bigger, stronger, and healthier

These gene-edited fish, pigs, and other animals could soon be on the menu.

The Download: the Saudi sci-fi megacity, and sleeping babies’ brains

This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology. These exclusive satellite images show Saudi Arabia’s sci-fi megacity is well underway In early 2021, Crown Prince Mohammed bin Salman of Saudi Arabia announced The Line: a “civilizational revolution” that would house up…

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.